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Applications

Agriculture. Diet problem.

Computer science. Compiler register allocation, data mining.
Electrical engineering. VLSI design, optimal clocking.

Energy. Blending petroleum products.

Economics. Equilibrium theory, two-person zero-sum games.
Environment. Water quality management.

Finance. Portfolio optimization.

Logistics. Supply-chain management.

Management. Hotel yield management.

Marketing. Direct mail advertising.

Manufacturing. Production line balancing, cutting stock.
Medicine. Radioactive seed placement in cancer treatment.
Operations research. Airline crew assignment, vehicle routing.
Physics. Ground states of 3-D Ising spin glasses.
Telecommunication. Network design, Internet routing.

Sports. Scheduling ACC basketball, handicapping horse races.

What is it? Problem-solving model for optimal allocation of scarce
resources, among a number of competing activities that encompasses:

« Shortest paths, maxflow, MST, matching, assignment, ... "\ ., tae an encire
) Ax:b, z-person Jero-sum games, course on LP
maximize 134+ 23B
subject oA " o8 = 80
to the 4A + 48 = 160
constraints 35A  + 208 < 1190
A, B = 0

Why significant?
« Fast commercial solvers available.
) ) X Ex: Delta claims that LP
« Widely applicable problem-solving model. <—— aves $100 million per year.

« Key subroutine for integer programming solvers.
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SCIENTIFIC

AMERICAN

Allocation of Resources by Linear Programming
by Robert Bland
Scientific American, Vol. 244, No. 6, June 1981




Toy LP example: brewer’s problem

Small brewery produces ale and beer.
e Production limited by scarce resources: corn, hops, barley malt.

corn (480 Ibs) hops (160 0z) malt (1190 Ibs)

« Recipes for ale and beer require different proportions of resources.

5 POUNDS CORN
4 OUNCES HOPS
35 POUNDS MALT

15 POUNDS CORN
4 OUNCES HOPS
20 POUNDS MALT

$13 profit per barrel $23 profit per barrel

Brewer’s problem: linear programming formulation

BARLEY MALT

Linear programming formulation. Sl s s
e Let 4 be the number of barrels of ale.
e Let B be the number of barrels of beer.

ale beer
maximize 13A +  23B profits
i S5A + 15B < 480 corn
subject
to the 4A + 4B < 160 hops
constraints
35A + 20B < 1190 malt
A s B > 0

5 POUNDS CORN
4 OUNCES HOPS.
35 POUNDS MALT

15 POUNDS CORN
4 OUNCES HOPS.
20 POUNDS MALT

Toy LP example: brewer’s problem

Brewer’s problem: choose product mix to maximize profits.

ENCECEEE
34 0 179 136

0
19.5
goods are /
divisible 12

32 480
20.5 405
28 480

128

160

160

34 barrels x 35 Ibs malt = 1190 Ibs
[ amount of available malt |

N

1190 $442

640 $736

1092.5 $725

980 $800
> $8007?

corn (480 Ibs)

Brewer’s problem: feasible region

hops (160 oz)

malt (1190 lbs)

$13 profit per barrel

5 POUNDS CORN
4 OUNCES HOPS
35 POUNDS MALT

15 POUNDS CORN
4 OUNCES HOPS
20 POUNDS MALT

$23 profit per barrel

Inequalities define halfplanes; feasible region is a convex polygon.

hops
4A + 4B < 160

(0, 32)

beer

malt
35A + 20B < 1190

corn
5A + 15B < 480

(0, 0) ale

(34, 0)



Brewer’s problem: objective function

T 0,32

beer

6@%

27,

O/‘/-

(]

13A + 23B = $1600

13A + 23B = $800

(0, 0) ale

Standard form linear program

(34, 0)

13A + 23B = $442

Goal. Maximize linear objective function of » nonnegative variables,

subject to m linear equations.
 Input: real numbers ay, ¢, b
« Output: real numbers x;.

primal problem (P)

maximize axi + X2 + .. +
an X1 + arzxz + ... +
subject az X1 +  anx2 + +
21 X1 22 X2
to the
constraints
am X1+ amex2 + ... +
X1 , X2 B ,

Cn Xn

aln Xn

azn Xn

amn Xn

Xn

linear means no x2, xy, arccos(x), etc.

v

b2

bm

matrix version

maximize cTx
subject A x
to the

constraints X

Caveat. No widely agreed notion of "standard form."

Brewer’s problem: geometry

Optimal solution occurs at an extreme point.

0, 32)

beer

extreme point

AN

intersection of 2 constraints in 2d

(0, 0)

ale

(34, 0)

Converting the brewer’s problem to the standard form

Original formulation.

Standard form.

maximize 13A
. 5A
subject
to the 4A
constraints
35A
A

+ 23B

+ 158 =< 480
+ 4B < 160
+ 208 < 1190
, B > 0

« Add variable Z and equation corresponding to objective function.

« Add slack variable to convert each inequality to an equality.

« Now a 6-dimensional problem.

maximize

subject
to the
constraints

z
13A + 23B

5A + 15B +

4A + 4B
35A + 20B
A, B

-z = o0
Sc = 480
+ Su = 160

+ Swm = 1190

Sc , S¢ , Swm > 0



Geometry

Inequalities define halfspaces; feasible region is a convex polyhedron.
A set is convex if for any two points a and b in the set, so is % (a + b).
An extreme point of a set is a point in the set that can't be written as

% (a + b), where a and b are two distinct points in the set.

extreme

/ point

O

not convex convex

Warning. Don't always trust intuition in higher dimensions.
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Geometry (continued)

Extreme point property. If there exists an optimal solution to (P),

then there exists one that is an extreme point.

« Good news: number of extreme points to consider is finite.

« Bad news : number of extreme points can be exponential!

Algorithms
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local optima are global optima
(follows because objective function is linear
and feasible region is convex)

LINEAR PROGRAMMING

» simplex algorithm



Simplex algorithm

Simplex algorithm. [George Dantzig, 1947]

o Developed shortly after WWII in response to logistical problems,

including Berlin airlift.

« Ranked as one of top 10 scientific algorithms of 20t century.

Generic algorithm.
» Start at some extreme point. /
« Pivot from one extreme point to an adjacent one.
« Repeat until optimal.

How to implement? Linear algebra.

never decreasing objective function

L

Simplex algorithm: initialization

maximize z
13A + 23B - Z =
subject 5A + 15B + Sc =
to the
constraints 4A + 48 + 5w =
35A + 20B + Sm =
A s B , Sc , S , Sm >

one basic variable per row

Initial basic feasible solution. 7
« Start with slack variables {S.,S,,S,,} as the basis.
» Set non-basic variables 4 and Bto 0.

« 3 equations in 3 unknowns yields S. =480, S;;= 160, S,,= 1190.

480
160
1190

basis ={S¢, Sy, Sm}
A=B=0
Z2=0
Sc =480
Sy =160
Sw=1190

no algebra needed

Simplex algorithm: basis

A basis is a subset of m of the n variables.

Basic feasible solution (BFS).

» Set n—m nonbasic variables to 0, solve for remaining m variables.

» Solve m equations in m unknowns.

« If unique and feasible = BFS.

basic feasible

o BFS « extreme point. solution
{B, S S} A B, 5, basic infgasible
0, 32) (12, 28) solution
maximize Z AE s
s By OH
13A + 23B -7 = 0 (19.41, 25.53)
subject 5A + 15B + Sc = 480 beer {A, B, Sc}
to the o
constraints ~ 4A + 4B + Su = 160
35A + 20B + Sm = 1190
A, B Sc , S, Sm > 0
St S Sc} ale A, Sy Sc}
(0, 0) (34, 0)
Simplex algorithm: pivot 1
maximize 4 pivot basis = {Sc, Su, Sl
13A 238 / - Z = 0 A=B=0
subject 5A + s — 480 720
to the Sc =480
constraints 4A 4B + Sk = 160 S, = 160
35A 20B + Swm = 1190 Sy=1190
A B , Sc , S , Swm > 0

substitute B = (1/15) (480 - 5A - Sc) and add B into the basis
(rewrite 2nd equation, eliminate B in 1st, 3rd, and 4th equations)

maximize

subject
to the
constraints

zZ
(16/3) A
(1/3) A
(8/3) A
(85/3) A

A,

+

(23/15) Sc
(1/15) Sc
(4/15) Sc
(4/3) Sc

Sc

+

SH

SH o,

Sm

Sm

<736
32
32

550

which basic variable
does B replace?

basis ={B, Sy, Su}
A=S.=0
Z=1736
B=32
Sy =32
Sy =550

20



Simplex algorithm: pivot 1

positive coefficient

maximize Z pivot basis = {Sc, Sy Su }
13A + 23B - Z = 0 A=B=0
subject 5A + + Sc = 480 Z2=0
to the Sc =480
constraints 4A + 4B + SH = 160 S, =160
35A + 20B + Sm = 1190 Su=1190
A , B Sc , Sv , Sm > 0

Q. Why pivot on column 2 (corresponding to variable B)?
« Its objective function coefficient is positive.
(each unit increase in B from 0 increases objective value by $23)
» Pivoting on column 1 (corresponding to 4) also OK.

Q. Why pivot on row 2?

» Preserves feasibility by ensuring RHS > 0.
e Minimum ratio rule: min { 480/15, 160/4, 1190/20 }.

Simplex algorithm: optimality

Q. When to stop pivoting?
A. When no objective function coefficient is positive.

Q. Why is resulting solution optimal?

A. Any feasible solution satisfies current system of equations.
o In particular: Z=800-S--2Sy
« Thus, optimal objective value Z* < 800 since S, S; > 0.
e Current BFS has value 800 = optimal.

maximize z basis = {A, B, S, }
- Sc - 2 Su - Z = -800 Sc=S4=0
subject B + (1/100Sc + (1/8)Su = 28 Z=2800
to the B =128
constraints A - (1/10)Sc  + (3/8) S = 12 Nl
- (25/6)Sc - (85/8)SH + Sm = 110 Sy=110

A ,B , Sc S, Sm > 0

Simplex algorithm: pivot 2

maximize Z .
pivot

(16/3) A
subject as3) A/ B
to the
constraints

(85/3) A

A, B

substitute A = (3/8) (32 + (4/15) Sc - Su ) and add A into the basis
(rewrite 3rd equation, eliminate A in 1st, 2nd, and 4th equations)

+

(23/15) Sc
(1/15) Sc
(4/15) Sc + Sk
(4/3) Sc

Sc , Sw

maximize 4
- Sc
subject B + (1/10)Sc
to the
constraints A - (1/10) Sc
- (25/6) Sc
A , B , Sc
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+

+

2 Su
(1/8) S
(3/8) S

(85/8) S

SH

+

)

Sm

Sm

Sm

Sm

basis = {B, Sy, Sy}

736 A=Sc=0
32 z-736
32 B=32
Sy =32
550 Sy =550
0

which basic variable
does A replace?

basis ={A, B, Sy}

-800 Sc=Sy=0
28 Z=3800
12 B=28

A=12
110 Su=110
0
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Simplex tableau

Simplex algorithm transforms initial 2D array into solution.

maximize 4
— Sc - 2 SH - Z = -800
subject B + (1/100Sc + (1/8)Su = 28
to the
constraints A = (/100Sc +  (3/8) 5k = 12
— (25/6)Sc - (85/8)Su + Sm = 110
A ,B , Sc SH , Sm > 0

final simplex tableaux

27

Simplex tableau

Encode standard form LP in a single Java 2D array.

maximize Z
13A + 23B
subject SA + 15B + Sc
to the
constraints ~ 4A + 4B + Sk
35A + 20B + Sm
A, B , Sc SH , Sm

>

480
160
1190

m
1
initial simplex tableaux
Simplex algorithm: initial simplex tableaux
Construct the initial simplex tableau.
m

constructor

put A[1[] into tableau

put I[][] into tableau
put c[] into tableau
put b[] into tableau

26
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Simplex algorithm: Bland's rule

. . . q 0 q m+n
Find entering column ¢ using Bland's rule: o
index of first column whose objective function
P
coefficient is positive.
m +

private int bland()
{
for.(int a=0; g<m+n; g+ entering column g has positive
if (a[MI[q] > 0) return q; <——F— objective function coefficient
return -1; «——f— optimal
}
29
Simplex algorithm: pivot
q 0 q m+n
Pivot on element row p, column g. 0
P I+
m F

public void pivot(int p, int q)
{
for (int i = 0; i <= m; i++)
for (int j = 0; j <= m+n; j++)
if G l=p&3j =9 -t
alil[j] -= a[pl[j] * a[illa]l / alpllql;

scale all entries but
row p and column q

for (int i = 0; i <= m; i++)
if (i !'= p) a[illq] = 0.0;

zero out column q

for (int j = 0; j <= m+n; j++)
if (3 !'= o) alpl[j]l /= alpllal;
a[pllql = 1.0;

«— L scalerowp

31

Simplex algorithm: min-ratio rule

) ) . . ) 0 q m+n
Find leaving row p using min ratio rule. 0
(Bland's rule: if a tie, choose first such row)
p I+
m aF
private int minRatioRule(int q)
{

int p = -1; «——+ leaving row

for (int i =0; i <m; i++)

{ consider only
if (a[illq] <= 0) continue; “—1 — Dpositive entries
else if (p == -1) p = 1i;
else if (a[illm+n] / a[illql < alpl[m+n] / alpllgl) :

: . row p has min

) p=1; I ratio so far

return p;

}
Simplex algorithm: bare-bones implementation
. . 0 q m+n
Execute the simplex algorithm. 7
p I+
m R

public void solve()
{
while (true)
{
int g = blandQ; entering column g (optimal if -1)
if (q == -1) break;
int p = minRatioRule(q); leaving row p (unbounded if -1)
if (p == -1) ...
pivot(p, q); pivot on row p, column q
}
}

30
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Simplex algorithm: running time

Remarkable property. In typical practical applications, simplex algorithm
terminates after at most 2 (m + n) pivots.

“ Yes. Most of the time it solved problems with m equations in 2m or 3m steps—
that was truly amazing. I certainly did not anticipate that it would turn out to
be so terrific. I had had no experience at the time with problems in higher
dimensions, and I didn't trust my geometrical intuition. For example, my
intuition told me that the procedure would require too many steps wandering
from one adjacent vertex to the next. In practice it takes few steps. In brief,
one's intuition in higher dimensional space is not worth a damn! Only now,
almost forty years from the time when the simplex method was first proposed,

are people beginning to get some insight into why it works as well as it does.

— George Dantzig 1984

Simplex algorithm: degeneracy

Degeneracy. New basis, same extreme point.

N

"stalling" is common in practice

Cycling. Get stuck by cycling through different bases that all correspond
to same extreme point.

« Doesn't occur in the wild.

« Bland's rule guarantees finite # of pivots.

choose lowest valid index for
entering and leaving columns

33
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Simplex algorithm: running time

Remarkable property. In typical practical applications, simplex algorithm
terminates after at most 2 (m + n) pivots.

Pivoting rules. Carefully balance the cost of finding an entering variable
with the number of pivots needed.

« No pivot rule is known that is guaranteed to be polynomial.

« Most pivot rules are known to be exponential (or worse) in worst-case.

Smoothed Analysis of Algorithms: Why the Simplex
Algorithm Usually Takes Polynomial Time

. . *
Daniel A. Spielman
Department of Mathematics

LT,
Cambridge, MA 02139
spielman@mit.edu

i
Shang-Hua Teng
Akamai Technologies Inc. and
Department of Computer Science
University of llinois at Urbana-Champaign

steng@cs.uiuc.edu
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Simplex algorithm: implementation issues

To improve the bare-bones implementation.

« Avoid stalling.

.

.

Maintain sparsity.
Numerical stability.
Detect infeasibility.
Detect unboundedness.

«—

«—

«—

«—

«—

requires artful engineering
requires fancy data structures
requires advanced math

run "phase I" simplex algorithm

no leaving row

Best practice. Don't implement it yourself!

Basic implementations. Available in many programming environments.

Industrial-strength solvers. Routinely solve LPs with millions of variables.

Modeling languages. Simplify task of modeling problem as LP.

IBM ILOG
CPLEX

Fastor and Smarter Than Ever

36



LP solvers: industrial strength

Brief history

a benchmark production planning model solved using linear programming would have
taken 82 years to solve in 1988, using the computers and the linear programming
algorithms of the day. Fifteen years later—in 2003—this same model could be solved
in roughly 1 minute, an improvement by a factor of roughly 43 million. Of this, a factor

of roughly 1,000 was due to increased processor speed, whereas a factor of roughly

43,000 was due to improvements in algorithms! PRESID
s’ﬁ"’%‘a
_ ioni i w
Designing a Digital Future £ i, '_;,_
S
( Report to the President and Congress, 2010 ) N

LINEAR PROGRAMMING

» implementations

Algorithms

RoBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

1939.
1947.
1947.
1947.
1948.
1975.
1979.
1984.
1990.

Production, planning. [Kantorovich]

Simplex algorithm. [Dantzig]

Duality. [von Neumann, Dantzig, Gale-Kuhn-Tucker]
Equilibrium theory. [Koopmans]

Berlin airlift. [Dantzig]

Nobel Prize in Economics. [Kantorovich and Koopmans]
Ellipsoid algorithm. [Khachiyan]

Projective-scaling algorithm. [Karmarkar]

Interior-point methods. [Nesterov-Nemirovskii, Mehorta, ...]

Kantorovich George Dantzig von Neumann Koopmans Khachiyan Karmarkar

Algorithms

38
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Reductions to standard form

Minimization problem. Replace min 134 +15B with max — 134 — 15B.
> constraints. Replace 44 +4B > 160 with 44 +4B — Sy = 160, Sy > 0.
Unrestricted variables. Replace B with B = By — Bi, Bo > 0, B; > 0.

nonstandard form

134 + 15B
subject to:  5A + 15B < 480
44 + 4B (2) 160
354 + 20B = 1190
A > 0
standard form
maximize —13A — 15By + 15B;
subject to: 54 + 15By — 15B; + Sc¢ = 480
4A + 4By — 4B - Sp = 160
354 + 20By — 20B; = 1190
A By By Sc Sy > 0

41

Maxflow problem (revisited)

Input. Weighted digraph G, single source s and single sink .
Goal. Find maximum flow from s to .

maxflow problem
1%

4
\

A WNNRERFEFOOO®
VA WA WNR

WNRHERREWWN
[=NeeeNeNeNeNol

capacities

43

Modeling

Linear “programming” (1950s term) = reduction to LP (modern term).
« Process of formulating an LP model for a problem.
« Solution to LP for a specific problem gives solution to the problem.

1. Identify variables.
2. Define constraints (inequalities and equations).

3. Define objective function.
software usually performs

4. Convert to standard form. «—— ", "0 "L caly

Examples.
« Maxflow.
« Shortest paths.
« Bipartite matching.
« Assignment problem.
e 2-person zero-sum games.

Modeling the maxflow problem as a linear program

Variables. x. = flow on edge v—w.
Constraints. Capacity and flow conservation.
Objective function. Net flow into .

LP formulation
Maximize x 35+x 45
subject to the constraints

maxflow problem

0=x4=2
7
»\6 i 0=x3,=3
B <= 0=ux;;=3
02 30 0=x,=1 ty consta
. capacity constraints
13 3.0 D= =1l
14 1.0 0=uxy,=I
23 1.0 0=x35=2
24 1.0 _
35 2.0 0=x45=3
45 3.0 Xo1=X13TX 14
T X2 =Xp3tX )y flow conservation
capacities EER oo a s constraints

X147 X04=Xys5

42
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Maximum cardinality bipartite matching problem

Input. Bipartite graph.

Goal. Find a matching of maximum cardinality.

set of edges with no vertex appearing twice

Interpretation. Mutual preference constraints.
« People to jobs.
« Students to writing seminars.

Alice Adobe

Adobe, Apple, Google Alice, Bob, Dave
Bob Apple

Adobe, Apple, Yahoo Alice, Bob, Dave
Carol Google

Google, IBM, Sun Alice, Carol, Frank
Dave 1BM

Adobe, Apple Carol, Eliza
Eliza Sun

IBM, Sun, Yahoo Carol, Eliza, Frank
Frank Yahoo

Google, Sun, Yahoo Bob, Eliza, Frank

Example: job offers

Linear programming perspective

match

A-1, B-

ing of cardinality 6:
5, C-2, D-0, E-3, F-4

45

Q. Got an optimization problem?

Ex. Maxflow, bipartite matching, shortest paths, ... [many, many, more]

Approach 1: Use a specialized algorithm to solve it.

o Algorithms 4/e.
« Vast literature on algorithms.

Approach 2: Use linear programming.
« Many problems are easily modeled as LPs.
« Commercial solvers can solve those LPs.
« Might be slower than specialized solution
(but you might not care).

Got an LP solver? Learn to use it!

assignment
problem

scheduli

shortest paths
in digraphs \

shortest paths
MST in undirected graphs

arbitrage

\

linear programming

bipartite
matching

network
reliability

product
distribution

maxflow

47

Maximum cardinality bipartite matching problem

LP formulation. One variable per pair.

Interpretation. x; = 1if person i assigned to job ;.

XA0 + XAl +XA2 +Xo + XB1 + XB5 + Xc2 + Xc3 + Xca
+Xpo + XD1 + Xe3 + Xe4 + Xes + Xr2 + Xr4 + XFs

maximize
at most one job per person
Xp0 + XAl +xa2 s 1
XBo + XBl +Xgs = |
subject
Xc2 +Xc3 +Xca =1
to the

. XD0 + XD1 <1
constraints

Xe3 + Xe4 +Xes =< |

XF2 + Xfa +Xr5 < |

at most one person per job

XA0 + Xgo + XDo
XAl + XB1 + XD1
XA2 + Xc2 + Xr2
Xc3 + Xe3
Xc4 + Xe4 + X4

X5 + Xe5 + XFs

all xij = 0

<1

Theorem. [Birkhoff 1946, von Neumann 1953]
All extreme points of the above polyhedron have integer (0 or 1) coordinates.

Corollary. Can solve matching problem by solving LP. «— notusually so lucky!

Universal problem-solving model (in theory)

46

Is there a universal problem-solving model?

o Maxflow.

« Shortest paths.
 Bipartite matching.

« Assignment problem.
o Multicommodity flow.

« Two-person zero-sum games.

» Linear programming.

« Factoring
« NP-complete problems.

tractable

intractable ?

see next lecture

\

Does P = NP? No universal problem-solving model exists unless P = NP.

48
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