A 1 g() I 1 t h Ims ROBERT SEDGEWICK | KEVIN WAYNE

6.5 REDUCTIONS

» introduction

» designing algorithms

» establishing lower bounds
» classifying problems

» intractability

RoOBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu

Overview: introduction to advanced topics

Main topics. [final two lectures]
o Reduction: relationship between two problems.
o Algorithm design: paradigms for solving problems.

Shifting gears.
 From individual problems to problem-solving models.
« From linear/quadratic to polynomial/exponential scale.
« From implementation details to conceptual frameworks.

Goals.
« Place algorithms and techniques we've studied in a larger context.
e Introduce you to important and essential ideas.
e Inspire you to learn more about algorithms!

6.5 REDUCTIONS

» introduction

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu

Bird's-eye view

Desiderata. Classify problems according to computational requirements.

min, max, median,

linear N
Burrows-Wheeler transform, ...
_ _ _ sorting, element distinctness,
linearithmic Nlog N) ,
& closest pair, Euclidean MST, ...
quadratic N2 ?
exponential cN ?

Frustrating news. Huge number of problems have defied classification.

Bird's-eye view

Desiderata. Classify problems according to computational requirements.

Desiderata’. Suppose we could (could not) solve problem X efficiently.
What else could (could not) we solve efficiently?

“ Give me a lever long enough and a fulcrum on which to

place it, and I shall move the world.” — Archimedes

Reduction

Def. Problem X reduces to problem Y if you can use an algorithm that
solves Y to help solve X.

Algorithm
forY

instance |
(of X)

solution to |

Algorithm for X

Cost of solving X = total cost of solving Y + cost of reduction.

T T

perhaps many calls to Y preprocessing and postprocessing
on problems of different sizes (typically less than cost of solving Y)
(though, typically only one call)

Reduction

Def. Problem X reduces to problem Y if you can use an algorithm that
solves Y to help solve X.

instance | Algorithm

solution to |
(of X) forY
T
Ex 1. [finding the median reduces to sorting]
To find the median of N items:
e Sort N items.
e« Return item in the middle.
cost of sorting
p - cost of reduction

Cost of solving finding the median. N logN + 1.

Reduction

Def. Problem X reduces to problem Y if you can use an algorithm that
solves Y to help solve X.

Algorithm
forY

instance |
(of X)

solution to |

Algorithm for X

Ex 2. [element distinctness reduces to sorting]
To solve element distinctness on N items:
e Sort N items.

o Check adjacent pairs for equality.
cost of sorting

pd L cost of reduction
Cost of solving element distinctness. N log N + N.

Reduction

Def. Problem X reduces to problem Y if you can use an algorithm that
solves Y to help solve X.

i : — Algorithm —— : _
instance | G — g — : » solution to |
(of X) ; — forY — :

Algorithm for X

Novice error. Confusing X reduces to Y with Y reduces to X.

ON COMPUTABLE NUMBERS, WITH AN APPLICATION TO
THE ENTSCHEIDUNGSPROBLEM

By A. M. TurING.

[Received 28 May, 1936.—Read 12 November, 1936.]

6.5 REDUCTIONS

» designing algorithms

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu

Reduction: design algorithms

Def. Problem X reduces to problem Y if you can use an algorithm that
solves Y to help solve X.

Design algorithm. Given algorithm for Y, can also solve X.

More familiar reductions.
« CPM reduces to topological sort.

Arbitrage reduces to negative cycles.

Bipartite matching reduces to maxflow.

Seam carving reduces to shortest paths in a DAG.

Burrows-Wheeler transform reduces to suffix sort.

Mentality. Since | know how to solve Y, can | use that algorithm to solve X?

1

programmer’s version: | have code for Y. Can | use it for X?

11

3-collinear

3-COLLINEAR. Given N distinct points in the plane, are there 3 (or more)
that all lie on the same line?

3-collinear

Brute force N3. For all triples of points (p, g, r) check if they are collinear.

12

3-collinear reduces to sorting

Sorting-based algorithm. For each point p,
« Compute the slope that each other point ¢ makes with p.
* Sort the remaining N — 1 points by slope.
o Collinear points are adjacent.

q3

-/

q2
qi

dx

cost of sorting (N times)
cost of reduction
d -

Cost of solving 3-collinear. N2 logN + N2.

13

Shortest paths on edge-weighted graphs and digraphs

Proposition. Undirected shortest paths (with nonnegative weights)
reduces to directed shortest path.

SIS
A B SN

Pf. Replace each undirected edge by two directed edges.

/<9\O\“\\
/ N

o

5

14

Shortest paths on edge-weighted graphs and digraphs

Proposition. Undirected shortest paths (with nonnegative weights)
reduces to directed shortest path.

cost of shortest
paths in digraph cost of reduction

/ /

Cost of undirected shortest paths. ElogV + (E + V).

15

Shortest paths with negative weights

Caveat. Reduction is invalid for edge-weighted graphs with negative
weights (even if no negative cycles).

O —O— +—@

T~ \
: 7 ——(—— T —

reduction creates
negative cycles

Remark. Can still solve shortest-paths problem in undirected graphs
(if no negative cycles), but need more sophisticated techniques.

\ reduces to weighted
non-bipartite matching (!)

16

Some reductions in combinatorial optimization

baseball bipartite undirected shortest paths seam
elimination matching (nonnegative) carving

N/ ' |

directed shortest paths arbitrage shortest paths
(nonnegative) 9 (in a DAG)

mincut
\ \ |

maxflow

assignment directed shortest paths
problem (no neg cycles)
linear

programming

17

6.5 REDUCTIONS

» establishing lower bounds

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu

Bird's-eye view

Goal. Prove that a problem requires a certain number of steps.
Ex. In decision tree model, any compare-based sorting algorithm
requires Q(N log N) compares in the worst case.

ach cab bca cba argument must apply to all
conceivable algorithms

/

Bad news. Very difficult to establish lower bounds from scratch.
Good news. Spread Q(Nlog N) lower bound to Y by reducing sorting to Y.

\

assuming cost of reduction is not too high

19

Linear-time reductions

Def. Problem X linear-time reduces to problem Y if X can be solved with:
e Linear number of standard computational steps.
e Constant number of calls to Y.

Ex. Almost all of the reductions we've seen so far. [Exceptions? |

Establish lower bound:

e If X takes Q(Nlog N) steps, then so does Y.
e If X takes Q(N?2) steps, then so does Y.

Mentality.
* If | could easily solve Y, then | could easily solve X.
* | can’t easily solve X.
 Therefore, | can't easily solve Y.

20

Element distinctness lineartime reduces to 2d closest pair

Element distinctness. Given N elements, are any two equal?
2d closest pair. Given N points in the plane, find the closest pair.

590584
-23439854
1251432 °
-2861534
3988818

~43434213 o *\\ R
333255

13546464 ¢ o

89885444

-43434213
11998833 ° o

element distinctness 2d closest pair

Element distinctness lineartime reduces to 2d closest pair

Element distinctness. Given N elements, are any two equal?
2d closest pair. Given N points in the plane, find the closest pair.

Proposition. Element distinctness linear-time reduces to 2d closest pair.
Pf.

 Element distinctness instance: xi,x2, ..., xn.

o 2d closest pair instance: (xi1,x1), (x2, x2), ..., (xnv, xn).

e The N elements are distinct iff distance of closest pair > 0.

allows quadratic tests of the form:

/ Xi < Xj Or (Xi — Xk)2 — (Xj — X2 <0

Element distinctness lower bound. In quadratic decision tree model,
any algorithm that solves element distinctness takes Q(Vlog N) steps.

Implication. In quadratic decision tree model, any algorithm for closest
pair takes Q(N log N) steps.

22

Some lineartime reductions in computational geometry

smallest
enclosing circle

element distinctness
(N log N lower bound)

7N\

sorting 2d closest pair

' v

2d convex hull 2d Euclidean MST
Delaunay triangulation) largest empty circle
Voronoi diagram (N log N lower bound)

23

Lower bound for 3-COLLINEAR

3-SUM. Given N distinct integers, are there three that sum to 07?

3-COLLINEAR. Given N distinct points in the plane, are there 3 (or more)
that all lie on the same line?

590584
-23439854
1251432 o
-2861534 Pt
3988818 ’
-4190745 o Re R
333255 R ’ o
13546464 4 o
89885444
~43434213
11998833 o o

3-sum 3-collinear

Lower bound for 3-COLLINEAR

3-SUM. Given N distinct integers, are there three that sum to 07?

3-COLLINEAR. Given N distinct points in the plane, are there 3 (or more)
that all lie on the same line?

Proposition. 3-SUM linear-time reduces to 3-COLLINEAR.
Pf. [next two slides] ™ lower-bound mentality:

if | can't solve 3-SUM in N'-99 time,

| can't solve 3-COLLINEAR
in NT-99 time either

Conjecture. Any algorithm for 3-SUM requires Q(N2-¢) steps.
Implication. No sub-quadratic algorithm for 3-COLLINEAR likely.

our N2 log N algorithm was pretty good

25

Complexity of 3-SUM

April 2014. Some recent evidence that the complexity might be N3/2,

Threesomes, Degenerates, and Love Triangles®

Allan Grgnlund Seth Pettie
MADALGO, Aarhus University University of Michigan

April 4, 2014

Abstract

The 3SUM problem is to decide, given a set of n real numbers, whether any three sum to zero.
We prove that the decision tree complexity of 3SUM is O(n*/24/logn), that there is a randomized
3SUM algorithm running in O(n?(loglogn)?/logn) time, and a deterministic algorithm running
in O(n?(loglogn)®?/(logn)??) time. These results refute the strongest version of the 3SUM
conjecture, namely that its decision tree (and algorithmic) complexity is (n?).

26

3-SUM linear-time reduces to 3-COLLINEAR

Proposition. 3-SUM linear-time reduces to 3-COLLINEAR.

e 3-SUM instance: xi,x2,...,XN.
e 3-COLLINEAR instance: (xi,xi3), (x2,x23), ..., (xn, x33).

Lemma. If g, b, and ¢ are distinct, thena+b+c=0
if and only if (a, @), (b, b3), and (c, ¢3) are collinear.

f(x)=x’

3+2+1=0

27

3-SUM linear-time reduces to 3-COLLINEAR

Proposition. 3-SUM linear-time reduces to 3-COLLINEAR.
e 3-SUM instance: xi,x2,...,XN.
e 3-COLLINEAR instance: (xi,xi3), (x2,x23), ..., (xn, x33).

Lemma. If g, b, and ¢ are distinct, thena+b+c=0
if and only if (a, @), (b, b3), and (c, ¢3) are collinear.

Pf. Three distinct points (a, a3, (b, b3), and (c, ¢3) are collinear iff:

a a 1
0 = b b 1
c & 1

= a(b® =) —ba’® -)+ c(a® — V%)

= (a=b)(b—c)(c—a)la+b+c)

28

More geometric reductions and lower bounds

3-sum
(conjectured N2-¢ lower bound)

AN

polygon containment 3-collinear dihedral rotation geometric base
3-concurrent min area line segment planar motion

triangle separator planning

29

Establishing lower bounds: summary

Establishing lower bounds through reduction is an important tool
in guiding algorithm design efforts.

Q. How to convince yourself no linear-time Euclidean MST algorithm exists?

Al. [hard way] Long futile search for a linear-time algorithm.
A2. [easy way] Linear-time reduction from element distinctness.

5

(]

2d Euclidean MST

30

6.5 REDUCTIONS

Algorithms
» classifying problems

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu

Classifying problems: summary

Desiderata. Problem with algorithm that matches lower bound.
Ex. Sorting and element distinctness have complexity Nlog N.

Desiderata’. Prove that two problems X and Y have the same complexity.
First, show that problem X linear-time reduces to Y.
« Second, show that Y linear-time reduces to X.
e Conclude that X and Y have the same complexity.
(even if we don't know what it is) \

assuming both take at least linear time

integer
multiplication

B g

Y = element integer
distinctness ey
division

X = sorting

32

Integer arithmetic reductions

Integer multiplication. Given two N-bit integers, compute their product.
Brute force. N2 bit operations.

1 1 0 1 O 1 0O 1
x 0 1 1 1 1T 1T 0 1
1 1 0 1 O 1 0O 1

O 0 00 0 0 0 O

1 1 0 1 O 1T 0 1
1 1. 0 1 O 1 O 1
1 1. 0 1 O 1 0O 1
1 1.0 1 O 1 0 1
1 1.0 1 O 1 0 1
O 0 00 00O O O

o1 101 0 O O OO O OO0 O 0O 1

33

Integer arithmetic reductions

Integer multiplication. Given two N-bit integers, compute their product.

Brute force. N2 bit operations.

integer multiplication axb M(N)
integer division al/b, amod b M(N)
integer square a? M(N)
integer square root |Va | M(N)

integer arithmetic problems with the same complexity as integer multiplication

Q. Is brute-force algorithm optimal?

34

History of complexity of integer multiplication

? brute force N2
1962 Karatsuba N 1.585
1963 Toom-3, Toom-4 N1465 = N 1404
1966 Toom-Cook Nl+e
1971 Schénhage-Strassen Nlog N log log N
2007 Firer N log N 2 log*N
? ? N

number of bit operations to multiply two N-bit integers

used in Maple, Mathematica, gcc, cryptography, ...

/

Remark. GNU Multiple Precision Library uses one of five GMP
different algorithm depending on size of operands.

«Arithmetic without limitations»

35

Numerical linear algebra reductions

Matrix multiplication. Given two N-by-N matrices, compute their product.
Brute force. N3 flops.

column j j
0.1 0.2 0.8 0.1 0.4 0.3 0.1 0.1 0.16 0.11 0.34 0.62
row i 0.5 0.3 0.9 0.6 0.2 0.2 0.0 0.6 i 0.74 0.45 0.47 1.22
X —
0.1 0.0 0.7 0.4 0.0 0.0 0.4 0.5 0.36 0.19 /0.33 0.72
0.0 0.3 0.3 0.1 0.8 0.4 0.1 0.9 0.14 0.1 0.13 0.42

0.5-0.1+ 0.3-0.0 + 0.9:0.4 + 0.6-0.1 =0.47

Numerical linear algebra reductions

Matrix multiplication. Given two N-by-N matrices, compute their product.
Brute force. N3 flops.

linear algebra order of growth

matrix multiplication AxB MM(N)
matrix inversion Al MM(N)
determinant |Al MM(N)
system of linear equations Ax=D> MM(N)
LU decomposition A=LU MM(N)
least squares min l|IAx — bll, MM(N)

numerical linear algebra problems with the same complexity as matrix multiplication

Q. Is brute-force algorithm optimal?

History of complexity of matrix multiplication

? brute force N3
1969 Strassen NN 2.808
1978 Pan N 2796
1979 Bini N 2780
1981 Schénhage N 2522
1982 Romani N 2517
1982 Coppersmith-Winograd N 2496
1986 Strassen N 2479
1989 Coppersmith-Winograd N 2376
2010 Strother N 23737
2011 Williams N 23727

? ? N2+e

number of floating-point operations to multiply two N-by-N matrices

6.5 REDUCTIONS

Algorithms

» intractability

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu

Bird's-eye view

Def. A problem is intractable if it can't be solved in polynomial time.
Desiderata. Prove that a problem is intractable.

input size=c+Ig K
Two problems that provably require exponential time. /

* Given a constant-size program, does it halt in at most K steps?
e Given N-by-N checkers board position, can the first player force a win?

N\

using forced capture rule

Alan designed the perfect computer

Frustrating news. Very few successes.

40

A core problem: satisfiability

SAT. Given a system of boolean equations, find a solution.

EX. = X1 or
X1 or

= X1 or

- X1 or

3-SAT. All equations of this form (with three variables per equation).

Key applications.

or X3
or X3
or - X3
or

or X3

instance |

or

or

trrue

trrue

trrue

trrue

trrue

« Automatic verification systems for software.

o Mean field diluted spin glass model in physics.
« Electronic design automation (EDA) for hardware.

X1 X2 X3 X4
T T F T

solution S

41

Satisfiability is conjectured to be intractable

Q. How to solve an instance of 3-SAT with N variables?
A. Exhaustive search: try all 2V truth assignments.

Congratilatiens, \
It anly fook yeu

Q. Can we do anything substantially more clever?

Conjecture (P # NP). 3-SAT is intractable (no poly-time algorithm).

N\

consensus opinion

42

Polynomialtime reductions

Problem X poly-time (Cook) reduces to problem Y if X can be solved with:
o Polynomial number of standard computational steps.
e Polynomial number of calls to Y.

Algorithm
forY

instance |
(of X)

solution to |

Algorithm for X

Establish intractability. If 3-SAT poly-time reduces to Y, then Y is intractable.
(assuming 3-SAT is intractable)

Mentality.
* If | could solve Y in poly-time, then | could also solve 3-SAT in poly-time.
» 3-SAT is believed to be intractable.
 Therefore, so is Y.

43

Integer linear programming

ILP. Given a system of linear inequalities, find an integral solution.

3x1+5x+2x3+x4+4xs > 10
S5x1+2x +4xa+ 1xs < 7
X1 +x3+2x4 <2
3x1 +4x3+ Txa < 7 linear inequalities
x1+xs <1

x1+tx3t+txs <1

all x, = {0,1} <«——— integer variables X1 X2 X3 X4 X5
O 1 0 1 1
instance | solution S

Context. Cornerstone problem in operations research.
Remark. Finding a real-valued solution is tractable (linear programming).

44

3-SAT poly-time reduces to ILP

3-SAT. Given a system of boolean equations, find a solution.

- X, or X, or X3 = trrue
Xy or X, or X3 = trrue

- X, or — X, or = X3 = true
- X, or X, or or Xy = trrue
- X, or X3 or X4 = true

ILP. Given a system of linear inequalities, find a 0-1 solution.

(1-x) + X2 + X3 > 1
X1 + (1-x) <+ X3 > 1
1-x) + U-=-x) + (1-x3) > 1
(1-x) + U-=-x) + + Xy = 1
(1-x) + X3 + Xy = 1

solution to this ILP instance gives solution to original 3-SAT instance

45

More poly-time reductions from 3-satisfiability

3-SAT

VERTEX COVER Dick Karp
'85 Turing award

3-COLOR

d1 01 S9dNpaJ 1VS-€

v

v

EXACT COVER ILP CLIQUE HAM-CYCLE
v /
SUBSET-SUM TSP HAM-PATH
4
PARTITION

Conjecture. 3-SAT is intractable.

Implication. All of these problems are intractable.

KNAPSACK BIN-PACKING

46

Implications of poly-time reductions from 3-satisfiability

Establishing intractability through poly-time reduction is an important tool
in guiding algorithm design efforts.

Q. How to convince yourself that a new problem is (probably) intractable?

Al. [hard way] Long futile search for an efficient algorithm (as for 3-SAT).
A2. [easy way] Reduction from 3-SAT.

Caveat. Intricate reductions are common.

COMPUTERS AND INTRACTABILITY
A Guide to the Theory of NP-Completeness

47

Search problems

Search problem. Problem where you can check a solution in poly-time.

Ex 1. 3-SA4T.

- X1 or X2 or X3 = [frue
Xy or -—Xp oOr X3 = [frue
- X1 or — X2 or - X3 = [frue
-X{ oOor -—X, oOr or X4 = true

X1 X2 X3 X4

-X> Or X3 or X4 = [lrue T T F T

instance | solution S

Ex 2. FACTOR. Given an N-bit integer x, find a nontrivial factor.

147573952589676412927 193707721

instance | solution S

48

P vs. NP

P. Set of search problems solvable in poly-time.
Importance. What scientists and engineers can compute feasibly.

NP. Set of search problems (checkable in poly-time).
Importance. What scientists and engineers aspire to compute feasibly.

Fundamental question.

Consensus opinion. No.

49

Cook-Levin theorem

A problem is NP-CompPLETE if
e |tis in NP.
* All problems in NP poly-time to reduce to it.

Cook-Levin theorem. 3-SAT is NP-COMPLETE.
Corollary. 3-SAT is tractable if and only if P = NP.
Two worlds.

NP

P+ NP

P=NP

50

Implications of Cook-Levin theorem

3-COLOR

\4

EXACT COVER

\4

SUBSET-SUM

\ 4

PARTITIO

KNAPSACK

Stephen Cook Leonid Levin
‘82 Turing award

CLIQUE HAM-CYCLE

IN HAM-PATH

All of these problems (and many, many more)

poly-time reduce to 3-SAT.

BIN-PACKING

51

Implications of Karp + Cook-Levin

CLIQUE HAM-CYCLE

» /

\4

PARTITION

\ All of these problems are NP-complete; they are
) manifestations of the same really hard problem.

KNAPSACK «<—> BIN-PACKING

-

TSP<«—> HAM-PATH

52

Birds-eye view: review

Desiderata. Classify problems according to computational requirements.

min, max, median,

linear N
Burrows-Wheeler transform, ...
linearithmic Nlog N sorting, element distinctness, ...
quadratic N 2 ?
exponential cN ?

Frustrating news. Huge number of problems have defied classification.

53

Birds-eye view: revised

Desiderata. Classify problems according to computational requirements.

min, max, median,

linear N
I Burrows-Wheeler transform, ...
linearithmic Nlog N sorting, element distinctness, ...
M(N)) ii.fzt.e(g.'er multiplication,
division, square root, ...
MM(N)) matrix multiplicationf Ax = b,
least square, determinant, ...
NP-complete probably not N° 3-SAT, IND-SET, ILP, ...

Good news. Can put many problems into equivalence classes.

54

Complexity zoo

Complexity class. Set of problems sharing some computational property.

-
dNS901 ._aa.amu

AHINDd £ 21
3IVdSdd mh LN

JIWAed/dbg o m
M = Zmay B &
dNd4 m %. M n.>_=__\wn—<n_mn_ 13
ﬂn—ﬂ-——-ﬂ—.— m.n.u :—..—ﬂc Eam l—.—E-—ﬂn-
AWILAYS = m._____._%m S
aj|qejawes-
ncnmm 19¢1 .—.v_n_n_n_m dnNasiuo.dd uun_z

o= LN LVS fojAjod &ne

AQD
H) A0VASHAR Z330VdSAOH ™ o 1oy ngan
Ajod/dxaN A —-ﬂ 113408
. Ajod/
P D Dy hz 1 WHLIOTY

di31vdSd U._s_.____<._._z>

0JIND AS,E_:
1S yredddg a_amN
nv__mNm POW .—mw Nma_z

=2 dNOOE() V.2

mguied s RI0d gy sorwo ~

dyasiuo.ag

ddd &

SIS T
s za_>_< deld It '1d

=
g
(v]

PPA
INAux

JOTAT0dVIN

a. JwAs

0
><8 ﬂ_wmm.ﬁ_ﬂ
u._E. 4 JdNE wuuz.a

gNu .__.c
ddanv
déo OdNSXEW
JWLLN 33y dSdN
Hd

https://complexityzoo.uwaterloo.ca

Lots of complexity classes (496 animals in zoo).

Bad news.

55

Summary

Reductions are important in theory to:
e Design algorithms.
« Establish lower bounds.
« Classify problems according to their computational requirements.

Reductions are important in practice to:
e Design algorithms.
« Design reusable software modules.
— stacks, queues, priority queues, symbol tables, sets, graphs
— sorting, regular expressions, suffix arrays
— MST, shortest paths, maxflow, linear programming
o Determine difficulty of your problem and choose the right tool.

56

