Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

6.5 REDUCTIONS

- introduction
- designing algorithms
- establishing lower bounds
- classifying problems

6.5 REDUCTIONS

designing algorithms

classifying problems

establishing lower bounds

introduction

intractability

intractability

Overview: introduction to advanced topics

Main topics. [final two lectures]

- Reduction: relationship between two problems.
- Algorithm design: paradigms for solving problems.

Shifting gears.

- From individual problems to problem-solving models.
- From linear/quadratic to polynomial/exponential scale.
- From implementation details to conceptual frameworks.

Goals.

- Place algorithms and techniques we've studied in a larger context.
- Introduce you to important and essential ideas.
- Inspire you to learn more about algorithms!

Bird's-eye view

Desiderata. Classify problems according to computational requirements.

complexity	order of growth	examples
linear	Ν	min, max, median, Burrows-Wheeler transform,
linearithmic	$N \log N$	sorting, element distinctness, closest pair, Euclidean MST,
quadratic	N ²	?
:	:	:
exponential	с ^N	?

Frustrating news. Huge number of problems have defied classification.

Algorithms

Robert Sedgewick | Kevin Wayne http://algs4.cs.princeton.edu

Bird's-eye view

Desiderata. Classify problems according to computational requirements.

Desiderata'. Suppose we could (could not) solve problem *X* efficiently. What else could (could not) we solve efficiently?

"Give me a lever long enough and a fulcrum on which to place it, and I shall move the world." — Archimedes

Reduction

Def. Problem *X* reduces to problem *Y* if you can use an algorithm that solves *Y* to help solve *X*.

cost of sorting

cost of reduction

Ex 1. [finding the median reduces to sorting] To find the median of *N* items:

Cost of solving finding the median. $N \log N + 1$.

- Sort *N* items.
- Return item in the middle.

Reduction

Def. Problem *X* reduces to problem *Y* if you can use an algorithm that solves *Y* to help solve *X*.

Reduction

Def. Problem *X* reduces to problem *Y* if you can use an algorithm that solves *Y* to help solve *X*.

Ex 2. [element distinctness reduces to sorting] To solve element distinctness on *N* items:

- Sort *N* items.
- Check adjacent pairs for equality.

cost of sorting cost of reduction stinctness. $N \log N + N$

Cost of solving element distinctness. $N \log N + N$.

Reduction

Def. Problem *X* reduces to problem *Y* if you can use an algorithm that solves *Y* to help solve *X*.

Novice error. Confusing *X* reduces to *Y* with *Y* reduces to *X*.

Reduction: design algorithms

Def. Problem *X* reduces to problem *Y* if you can use an algorithm that solves *Y* to help solve *X*.

Design algorithm. Given algorithm for *Y*, can also solve *X*.

More familiar reductions.

- CPM reduces to topological sort.
- Arbitrage reduces to negative cycles.
- Bipartite matching reduces to maxflow.
- Seam carving reduces to shortest paths in a DAG.
- Burrows-Wheeler transform reduces to suffix sort.

•••

3-collinear

3-COLLINEAR. Given *N* distinct points in the plane, are there 3 (or more) that all lie on the same line?

Brute force N³. For all triples of points (p, q, r) check if they are collinear.

programmer's version: I have code for Y. Can I use it for X?

3-collinear reduces to sorting

Sorting-based algorithm. For each point *p*,

- Compute the slope that each other point *q* makes with *p*.
- Sort the remaining N-1 points by slope.
- Collinear points are adjacent.

Shortest paths on edge-weighted graphs and digraphs

Proposition. Undirected shortest paths (with nonnegative weights) reduces to directed shortest path.

Cost of undirected shortest paths. $E \log V + (E + V)$.

Shortest paths on edge-weighted graphs and digraphs

Proposition. Undirected shortest paths (with nonnegative weights) reduces to directed shortest path.

Pf. Replace each undirected edge by two directed edges.

Shortest paths with negative weights

Caveat. Reduction is invalid for edge-weighted graphs with negative weights (even if no negative cycles).

Remark. Can still solve shortest-paths problem in undirected graphs (if no negative cycles), but need more sophisticated techniques.

Some reductions in combinatorial optimization

Bird's-eye view

Goal. Prove that a problem requires a certain number of steps.

Ex. In decision tree model, any compare-based sorting algorithm requires $\Omega(N \log N)$ compares in the worst case.

Bad news. Very difficult to establish lower bounds from scratch. Good news. Spread $\Omega(N \log N)$ lower bound to *Y* by reducing sorting to *Y*.

Linear-time reductions

Def. Problem *X* linear-time reduces to problem *Y* if *X* can be solved with:

- Linear number of standard computational steps.
- Constant number of calls to Y.
- Ex. Almost all of the reductions we've seen so far. [Exceptions?]

Establish lower bound:

- If *X* takes $\Omega(N \log N)$ steps, then so does *Y*.
- If X takes $\Omega(N^2)$ steps, then so does Y.

Mentality.

- If I could easily solve *Y*, then I could easily solve *X*.
- I can't easily solve X.
- Therefore, I can't easily solve Y.

Element distinctness linear-time reduces to 2d closest pair

Element distinctness. Given *N* elements, are any two equal? 2d closest pair. Given *N* points in the plane, find the closest pair.

Some linear-time reductions in computational geometry

Element distinctness linear-time reduces to 2d closest pair

Element distinctness. Given *N* elements, are any two equal? 2d closest pair. Given *N* points in the plane, find the closest pair.

Proposition. Element distinctness linear-time reduces to 2d closest pair. Pf.

- Element distinctness instance: $x_1, x_2, ..., x_N$.
- 2d closest pair instance: (*x*₁, *x*₁), (*x*₂, *x*₂), ..., (*x*_N, *x*_N).
- The *N* elements are distinct iff distance of closest pair > 0.

allows quadratic tests of the form: $x_i < x_j$ or $(x_i - x_k)^2 - (x_j - x_k)^2 < 0$

Element distinctness lower bound. In quadratic decision tree model, any algorithm that solves element distinctness takes $\Omega(N \log N)$ steps.

Implication. In quadratic decision tree model, any algorithm for closest pair takes $\Omega(N \log N)$ steps.

21

Lower bound for 3-COLLINEAR

3-SUM. Given *N* distinct integers, are there three that sum to 0?

3-COLLINEAR. Given *N* distinct points in the plane, are there 3 (or more) that all lie on the same line?

Lower bound for 3-COLLINEAR

3-SUM. Given *N* distinct integers, are there three that sum to 0?

3-COLLINEAR. Given *N* distinct points in the plane, are there 3 (or more) that all lie on the same line?

Proposition. 3-SUM linear-time reduces to 3-COLLINEAR.

Pf. [next two slides]

I lower-bound mentality: if I can't solve 3-SUM in N^{1.99} time, I can't solve 3-COLLINEAR in N^{1.99} time either

Conjecture. Any algorithm for 3-SUM requires $\Omega(N^{2-\varepsilon})$ steps. Implication. No sub-quadratic algorithm for 3-COLLINEAR likely.

our N² log N algorithm was pretty good

Complexity of 3-SUM

April 2014. Some recent evidence that the complexity might be $N^{3/2}$.

Threesomes, Degenerates, and Love Triangles*

Allan Grønlund Seth Pettie MADALGO, Aarhus University University of Michigan

April 4, 2014

Abstract

The 3SUM problem is to decide, given a set of n real numbers, whether any three sum to zero. We prove that the decision tree complexity of 3SUM is $O(n^{3/2}\sqrt{\log n})$, that there is a randomized 3SUM algorithm running in $O(n^2(\log \log n)^2/\log n)$ time, and a deterministic algorithm running in $O(n^2(\log \log n)^{5/3}/(\log n)^{2/3})$ time. These results refute the strongest version of the 3SUM conjecture, namely that its decision tree (and algorithmic) complexity is $\Omega(n^2)$.

3-SUM linear-time reduces to 3-COLLINEAR

Proposition. 3-SUM linear-time reduces to 3-COLLINEAR.

- *3-SUM* instance: *x*₁, *x*₂, ..., *x*_N.
- 3-COLLINEAR instance: $(x_1, x_1^3), (x_2, x_2^3), \dots, (x_N, x_N^3)$.

Lemma. If *a*, *b*, and *c* are distinct, then a + b + c = 0 if and only if $(a, a^3), (b, b^3)$, and (c, c^3) are collinear.

3-SUM linear-time reduces to 3-COLLINEAR

Proposition. 3-SUM linear-time reduces to 3-COLLINEAR.

- *3-SUM* instance: *x*₁, *x*₂, ... , *x*_N.
- 3-COLLINEAR instance: $(x_1, x_1^3), (x_2, x_2^3), \dots, (x_N, x_N^3)$.

Lemma. If *a*, *b*, and *c* are distinct, then a + b + c = 0 if and only if $(a, a^3), (b, b^3)$, and (c, c^3) are collinear.

Pf. Three distinct points (a, a^3) , (b, b^3) , and (c, c^3) are collinear iff:

 $0 = \begin{vmatrix} a & a^{3} & 1 \\ b & b^{3} & 1 \\ c & c^{3} & 1 \end{vmatrix}$ $= a(b^{3} - c^{3}) - b(a^{3} - c^{3}) + c(a^{3} - b^{3})$

$$= (a-b)(b-c)(c-a)(a+b+c)$$

More geometric reductions and lower bounds

Establishing lower bounds: summary

Establishing lower bounds through reduction is an important tool in guiding algorithm design efforts.

Q. How to convince yourself no linear-time Euclidean MST algorithm exists?

A1. [hard way] Long futile search for a linear-time algorithm.

A2. [easy way] Linear-time reduction from element distinctness.

Classifying problems: summary

29

Desiderata. Problem with algorithm that matches lower bound. Ex. Sorting and element distinctness have complexity $N \log N$.

Desiderata'. Prove that two problems *X* and *Y* have the same complexity. First, show that problem *X* linear-time reduces to *Y*.

- Second, show that *Y* linear-time reduces to *X*.
- Conclude that X and Y have the same complexity.
 (even if we don't know what it is)

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

6.5 REDUCTIONS

introduction T

designing algorithms
 establishing lower bounds
 classifying problems

intractability

Integer arithmetic reductions

Integer multiplication. Given two *N*-bit integers, compute their product. Brute force. N^2 bit operations.

Integer arithmetic reductions

Integer multiplication. Given two *N*-bit integers, compute their product. Brute force. N^2 bit operations.

problem	arithmetic	order of growth
integer multiplication	$a \times b$	M(N)
integer division	$a \mid b, a \mod b$	M(N)
integer square	<i>a</i> ²	M(N)
integer square root	$\lfloor \sqrt{a} \rfloor$	M(N)

integer arithmetic problems with the same complexity as integer multiplication

Q. Is brute-force algorithm optimal?

33

History of complexity of integer multiplication

year	algorithm	order of growth
?	brute force	N ²
1962	Karatsuba	N ^{1.585}
1963	Toom-3, Toom-4	$N^{1.465}, N^{1.404}$
1966	Toom-Cook	$N^{1+arepsilon}$
1971	Schönhage-Strassen	$N \log N \log \log N$
2007	Fürer	$N \log N 2^{\log^* N}$
?	?	Ν

number of bit operations to multiply two N-bit integers

used in Maple, Mathematica, gcc, cryptography, ...

Remark. GNU Multiple Precision Library uses one of five different algorithm depending on size of operands.

35

Numerical linear algebra reductions

Matrix multiplication. Given two N-by-N matrices, compute their product. Brute force. N^3 flops.

						column j								
	0.1	0.2	0.8	0.1		0.4	0.3	0.1	0.1		0.16	0.11	0.34	0.62
row i	0.5	0.3	0.9	0.6	x	0.2	0.2	0.0	0.6	i	0.74	0.45	0.47	1.22
	0.1	0.0	0.7	0.4	^	0.0	0.0	0.4	0.5	=	0.36	0.19	0.33	0.72
	0.0	0.3	0.3	0.1		0.8	0.4	0.1	0.9		0.14	0.10	0.13	0.42

 $0.5 \cdot 0.1 + 0.3 \cdot 0.0 + 0.9 \cdot 0.4 + 0.6 \cdot 0.1 = 0.47$

Numerical linear algebra reductions

Matrix multiplication. Given two N-by-N matrices, compute their product. Brute force. N^3 flops.

problem	linear algebra	order of growth
matrix multiplication	$A \times B$	MM(N)
matrix inversion	A^{-1}	MM(N)
determinant		MM(N)
system of linear equations	Ax = b	MM(N)
LU decomposition	A = L U	MM(N)
least squares	$\min \ Ax - b\ _2$	MM(N)

numerical linear algebra problems with the same complexity as matrix multiplication

Q. Is brute-force algorithm optimal?

History of complexity of matrix multiplication

year	algorithm	order of growth
?	brute force	<i>N</i> ³
1969	Strassen	$N^{2.808}$
1978	Pan	N ^{2.796}
1979	Bini	$N^{2.780}$
1981	Schönhage	N ^{2.522}
1982	Romani	N ^{2.517}
1982	Coppersmith-Winograd	$N^{2.496}$
1986	Strassen	N ^{2.479}
1989	Coppersmith-Winograd	N ^{2.376}
2010	Strother	N ^{2.3737}
2011	Williams	N 2.3727
?	?	$N^{2+\epsilon}$

number of floating-point operations to multiply two N-by-N matrices

Bird's-eye view

37

Def. A problem is intractable if it can't be solved in polynomial time. Desiderata. Prove that a problem is intractable.

Two problems that provably require exponential time.

input size = c + lg K

- Given a constant-size program, does it halt in at most K steps?
- Given *N*-by-*N* checkers board position, can the first player force a win?

using forced capture rule

Frustrating news. Very few successes.

A core problem: satisfiability

SAT. Given a system of boolean equations, find a solution.

				ins	tance I						so	luti	on	S
			$\neg x_2$	or	x_3	or	x_4	=	true	Г	-	Т	F	Т
	$\neg x_1$	or	$\neg x_2$	or		or	x_4	=	true	х	1	<i>x</i> ₂	<i>x</i> ₃	<i>x</i> 4
	$\neg x_1$	or	$\neg x_2$	or	$\neg x_3$			=	true					
	x_1	or	$\neg x_2$	or	<i>x</i> ₃			=	true					
ζ.	$\neg x_1$	or	x_2	or	<i>x</i> ₃			=	true					

3-SAT. All equations of this form (with three variables per equation).

Key applications.

- Automatic verification systems for software.
- Mean field diluted spin glass model in physics.
- Electronic design automation (EDA) for hardware.
- ...

Ex

Polynomial-time reductions

- Polynomial number of standard computational steps.
- Polynomial number of calls to Y.

Establish intractability. If *3-SAT* poly-time reduces to *Y*, then *Y* is intractable. (assuming *3-SAT* is intractable)

Mentality.

- If I could solve *Y* in poly-time, then I could also solve *3-SAT* in poly-time.
- *3-SAT* is believed to be intractable.
- Therefore, so is *Y*.

Satisfiability is conjectured to be intractable

- Q. How to solve an instance of 3-SAT with N variables?
- A. Exhaustive search: try all 2^N truth assignments.

- Q. Can we do anything substantially more clever?
- Conjecture ($P \neq NP$). 3-SAT is intractable (no poly-time algorithm).

consensus opinion

Integer linear programming

ILP. Given a system of linear inequalities, find an integral solution.

Context. Cornerstone problem in operations research.

Remark. Finding a real-valued solution is tractable (linear programming).

3-SAT poly-time reduces to ILP

3-SAT. G	iven a sy	ste	m of boo	olear	n equatio	ons,	find	a so	olution.
	$\neg x_1$	or	<i>x</i> ₂	or	<i>x</i> ₃			=	true
	<i>x</i> ₁	or	$\neg x_2$	or	<i>x</i> ₃			=	true
	$\neg x_1$	or	$\neg x_2$	or	$\neg x_3$			=	true
	$\neg x_1$	or	$\neg x_2$	or		or	x_4	=	true
			$\neg x_2$	or	<i>x</i> ₃	or	x_4	=	true
ILP. Give	n a syst	em o	of linear	inec	qualities,	find	d a 0	-1 s	olution.
	$(1 - x_1)$	+	<i>x</i> ₂	+	<i>x</i> ₃			≥	1
	<i>x</i> ₁	+	$(1 - x_2)$	+	<i>x</i> ₃			≥	1
	$(1 - x_1)$	+	$(1 - x_2)$	+	$(1 - x_3)$			≥	1
	$(1 - x_1)$	+	$(1 - x_2)$	+		+	<i>x</i> ₄	≥	1
			$(1 - x_2)$	+	<i>x</i> ₃	+	<i>x</i> ₄	≥	1
	solution t	o this	ILP instanc	e give	s solution t	o orig	inal 3-	-SAT i	nstance

Implications of poly-time reductions from 3-satisfiability

Establishing intractability through poly-time reduction is an important tool in guiding algorithm design efforts.

- Q. How to convince yourself that a new problem is (probably) intractable?
- A1. [hard way] Long futile search for an efficient algorithm (as for *3-SAT*).
- A2. [easy way] Reduction from 3-SAT.

Caveat. Intricate reductions are common.

More poly-time reductions from 3-satisfiability

Search problems

Search problem. Problem where you can check a solution in poly-time.

Ex 1. *3-SAT*.

$\neg x_1$	or	<i>x</i> ₂	or	<i>x</i> ₃			=	true	
x_1	or	$\neg x_2$	or	<i>x</i> ₃			=	true	
$\neg x_1$	or	$\neg x_2$	or	$\neg x_3$			=	true	
$\neg x_1$	or	$\neg x_2$	or		or	<i>x</i> ₄	=	true	$x_1 \ x_2 \ x_3 \ x_4$
		$\neg x_2$	or	<i>x</i> ₃	or	<i>x</i> ₄	=	true	T T F T
			ins	tance I					solution S

Ex 2. FACTOR. Given an N-bit integer x, find a nontrivial factor.

147573952589676412927	193707721
instance I	solution S

P vs. NP

P. Set of search problems solvable in poly-time.Importance. What scientists and engineers can compute feasibly.

NP. Set of search problems (checkable in poly-time). Importance. What scientists and engineers aspire to compute feasibly.

Fundamental question.

Consensus opinion. No.

Implications of Cook-Levin theorem

Cook-Levin theorem

A problem is **NP-COMPLETE** if

- It is in NP.
- All problems in NP poly-time to reduce to it.

Cook-Levin theorem. *3-SAT* is NP-COMPLETE. Corollary. *3-SAT* is tractable if and only if P = NP.

Two worlds.

Implications of Karp + Cook-Levin

Birds-eye view: review

Desiderata. Classify problems according to computational requirements.

complexity	order of growth	examples
linear	Ν	min, max, median, Burrows-Wheeler transform,
linearithmic	$N \log N$	sorting, element distinctness,
quadratic	N ²	?
:	:	:
exponential	с ^N	?

Frustrating news. Huge number of problems have defied classification.

53

Complexity zoo

https://complexityzoo.uwaterloo.ca

Birds-eye view: revised

Desiderata. Classify problems according to computational requirements.

complexity	order of growth	examples
linear	Ν	min, max, median, Burrows-Wheeler transform,
linearithmic	$N \log N$	sorting, element distinctness,
M(N)	?	integer multiplication, division, square root,
MM(N)	?	matrix multiplication, $Ax = b$, least square, determinant,
:	:	:
NP-complete	probably not N^b	3-SAT, IND-SET, ILP,

Good news. Can put many problems into equivalence classes.

Summary

Reductions are important in theory to:

- Design algorithms.
- Establish lower bounds.
- Classify problems according to their computational requirements.

Reductions are important in practice to:

- Design algorithms.
- Design reusable software modules.
 - stacks, queues, priority queues, symbol tables, sets, graphs
 - sorting, regular expressions, suffix arrays
 - MST, shortest paths, maxflow, linear programming
- Determine difficulty of your problem and choose the right tool.

Bad news. Lots of complexity classes (496 animals in zoo).