A 1 g O r 1 th m S ROBERT SEDGEWICK | KEVIN WAYNE

6.4 MAXIMUM FLOW

» introduction
» Ford-Fulkerson algorithm

» maxfow-mincut theorem

Algorithms

» analysis of running time

» Java implementation

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu } app/fcaﬁons

Mincut problem

Input. An edge-weighted digraph, source vertex s, and target vertex t.

AN

each edge has a
positive capacity

capacity
I
b 4 15 15 10
AN
s 5 Il\ 8\,71\ 10—(1)
N

6.4 MAXIMUM FLow

» introduction

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

Mincut problem

Def. A st-cut (cut) is a partition of the vertices into two disjoint sets,
with s in one set A and ¢ in the other set B.

Def. Its capacity is the sum of the capacities of the edges from A to B.

4
capaC|ty10+5+15\</




Mincut problem

Def. A st-cut (cut) is a partition of the vertices into two disjoint sets,
with s in one set A and ¢ in the other set B.

Def. Its capacity is the sum of the capacities of the edges from A to B.

don't count edges
from B to A

A

capacity=10+8+16= . 16 )

Mincut application (RAND 1950s)

Mincut problem

"Free world" goal. Cut supplies (if cold war turns into real war).

v;ﬁ\__ 7
M < K @ \ [oriGINS
y @ N 3 rf 12 = g] /
»"‘ / \._/l \\ I
; /
fo X gy
[(§ i €0 3

~ The ]
ottignec o
Z 75
; a : Pc
53T
0 3213 &ty-(aw)

.. ; % | 0 . @
zZ l

rail network connecting Soviet Union with Eastern European countries
(map declassified by Pentagon in 1999)

Def. A sr-cut (cut) is a partition of the vertices into two disjoint sets,
with s in one set A and ¢ in the other set B.

Def. Its capacity is the sum of the capacities of the edges from A to B.

Minimum st-cut (mincut) problem. Find a cut of minimum capacity.

capacity=10+8+10= ‘

Potential mincut application (2010s)

Government-in-power’s goal. Cut off communication to set of people.

facebook




Maxflow problem

Input. An edge-weighted digraph, source vertex s, and target vertex t.

AN

each edge has a
positive capacity

capacity

Maxflow problem

Def. An st-flow (flow) is an assignment of values to the edges such that:
» Capacity constraint: 0 < edge's flow < edge's capacity.
» Local equilibrium: inflow = outflow at every vertex (except s and ).

Def. The value of a flow is the inflow at .

\

we assume no edges point to s or from t

5/9
AN
\0\\Q 5//\9 J\/’0
\y
5/5 5/8 _10/10_)0 value = 5+10+10 =(25)
/0/ \\Q
/s N
/
10/16

Maxflow problem

Def. An st-flow (flow) is an assignment of values to the edges such that:
« Capacity constraint: 0 < edge's flow < edge's capacity.
» Local equilibrium: inflow = outflow at every vertex (except s and 7).

flow capacity
inflowatv = 5+5+0 =10
5/9 outflowatv = 10+ 0 =10
0 \f ,
N\ //$ 0/15 //0

10/ 16

Maxflow problem

Def. An st-flow (flow) is an assignment of values to the edges such that:
« Capacity constraint: 0 =< edge's flow < edge's capacity.
» Local equilibrium: inflow = outflow at every vertex (except s and ).

Def. The value of a flow is the inflow at ¢.

Maximum st-flow (maxflow) problem. Find a flow of maximum value.

8/9
S 2 \e
A\ P —
7 7,
N S \
5/5 8/8 _10/10_)0 vaIue=8+lO+10=
7 Q
$ A
//J\ 3/6‘ \Q\



Maxflow application (Tolstoi 1930s)

Soviet Union goal. Maximize flow of supplies to Eastern Europe.

capacity———>0g]
10

rail network connecting Soviet Union with Eastern European countries

(map declassified by Pentagon in 1999)

Summary

Input. A weighted digraph, source vertex s, and target vertex .
Mincut problem. Find a cut of minimum capacity.
Maxflow problem. Find a flow of maximum value.

8/9
2 ¢ /
© 775 7, 10
N
4
s 5/5 8/8 10/10 t 8 m— t
7 /
> Q
//j 3/6 \Q\\ l 10
13/16

value of flow = 28 capacity of cut =28

Remarkable fact. These two problems are dual!

Potential maxflow application (2010s)

"Free world" goal. Maximize flow of information to specified set of people.

facebook

facebook graph

6.4 MAXIMUM FLOW

» Ford-Fulkerson algorithm

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu



Ford-Fulkerson algorithm

Initialization. Start with O flow.

flow capacity

\ /

initialization

0/9
Q o
N 0/4 o_ 0/15 -,
o) /s o
value of flow
s 0/5 0/8 0/10 t) 0
o \Q
“s 0/4 9z 0/15 o)
0/16

Idea: increase flow along augmenting paths

Augmenting path. Find an undirected path from s to 7 such that:
« Can increase flow on forward edges (not full).

2"d qugmenting path

S t 10 +10=20
\ ) /
(2]
&// O \\Q
5 %1

Idea: increase flow along augmenting paths

Augmenting path. Find an undirected path from s to 7 such that:
« Can increase flow on forward edges (not full).

1st augmenting path

bottleneck capacity =10

Q/ \ 0
\Q A ‘&//
S
\ 0

S _'9-/]0» t

Idea: increase flow along augmenting paths

0+10=10

Augmenting path. Find an undirected path from s to 7 such that:
« Can increase flow on forward edges (not full).
« Can decrease flow on backward edge (not empty).

3rd augmenting path

9/9 >
\ A af
Ag//f 7
5 5 \ \
s 9/5 > ©/8 > t

backward edge
(not empty)

20 +5=25

20



Idea: increase flow along augmenting paths

Augmenting path. Find an undirected path from s to 7 such that:
« Can increase flow on forward edges (not full).
« Can decrease flow on backward edge (not empty).

4th qugmenting path
g arp backward edge

%/X (nOtempty)
//5
8 \ \
S 5/8 ) t) 25 +3=28
\ . \
K&/ aj
s “6
\ 13 \
1—9/16—)

21

Ford-Fulkerson algorithm

Ford-Fulkerson algorithm

Start with 0 flow.

While there exists an augmenting path:
- find an augmenting path
- compute bottleneck capacity

- increase flow on that path by bottleneck capacity

Questions.
« How to compute a mincut?
« How to find an augmenting path?
« If FF terminates, does it always compute a maxflow?
« Does FF always terminate? If so, after how many augmentations?

28]

Idea: increase flow along augmenting paths

Termination. All paths from s to r are blocked by either a

 Full forward edge.

« Empty backward edge.

no more augmenting paths

\\Q 0/4
KN
o - @
7
o
— 0/4
%5

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

8/9

//$

8/8

13/16

0/15 -

0/15

\ full forward edge

empty backward edge

6.4 MAXIMUM FLOW

» maxfow-mincut theorem

22



Relationship between flows and cuts

Def. The net flow across a cut (A, B) is the sum of the flows on its edges
from A to B minus the sum of the flows on its edges from B to A.

net flow across cut = 5+ 10+ 10= 25

IS
N

‘—10/10_) t value of flow = 25

W
\0

' 10/16 /

Relationship between flows and cuts

25

Def. The net flow across a cut (A, B) is the sum of the flows on its edges
from A to B minus the sum of the flows on its edges from B to A.

net flow across cut = (10+10 +5+10+0+0)-(5+5+0+0) = 25

/ I\ } edges from B to A
\Q 0/4
T—m/]o_) t value of flow = 25
KN

< S

0/4 0/15 o

NG

10/16

27

Relationship between flows and cuts

Def. The net flow across a cut (4, B) is the sum of the flows on its edges
from A to B minus the sum of the flows on its edges from B to A.

net flow across cut = 10+ 5+ 10= 25

Q K S
N\ e —
7 7,
\Q\ $ o
5/5—) 5/8 10/10 t value of flow = 25
‘0 \\0
/s N

10/ 16

26

Relationship between flows and cuts

Flow-value lemma. Let f be any flow and let (4, B) be any cut. Then, the net
flow across (A, B) equals the value of f.

Intuition. Conservation of flow.
Pf. By induction on the size of B.
e Base case: B={t}.

« Induction step: remains true by local equilibrium when moving
any vertex from A to B.

Corollary. Outflow from s = inflow to r = value of flow.

28



Relationship between flows and cuts

Weak duality. Let ' be any flow and let (A, B) be any cut.
Then, the value of the flow < the capacity of the cut.

Pf. Value of flow f = net flow across cut (A, B) = capacity of cut (4, B).

f

flow-value lemma flow bounded by capacity

N 3 = /

e
s 70
o 10

S 5/5 7/8 9/10 t

’
> 2 NJ

6
N \

12/16

value of flow = 27 capacity of cut = 30

29

Maxflow-mincut theorem

Augmenting path theorem. A flow fis a maxflow iff no augmenting paths.
Maxflow-mincut theorem. Value of the maxflow = capacity of mincut.

Pf. The following three conditions are equivalent for any flow f:

i. There exists a cut whose capacity equals the value of the flow f.
ii. f is a maxflow.
iii. There is no augmenting path with respect to f.

[ii = iii] We prove contrapositive: ~iii = ~ii.
« Suppose that there is an augmenting path with respect to f.
e Can improve flow /' by sending flow along this path.
e Thus, f is not a maxflow.

31

Maxflow-mincut theorem

Augmenting path theorem. A flow fis a maxflow iff no augmenting paths.
Maxflow-mincut theorem. Value of the maxflow = capacity of mincut.

Pf. The following three conditions are equivalent for any flow f:

i. There exists a cut whose capacity equals the value of the flow f.
ii. f is a maxflow.
iii. There is no augmenting path with respect to 1.

[i=ii]
» Suppose that (A, B) is a cut with capacity equal to the value of 1.
e Then, the value of any flow /' < capacity of (A, B) = value of /.

e Thus, fis a maxflow. t t
weak duality by assumption

Maxflow-mincut theorem

Augmenting path theorem. A flow fis a maxflow iff no augmenting paths.
Maxflow-mincut theorem. Value of the maxflow = capacity of mincut.

Pf. The following three conditions are equivalent for any flow f:

i. There exists a cut whose capacity equals the value of the flow f.
ii. f is a maxflow.
iii. There is no augmenting path with respect to 1.

[iii=1]
Suppose that there is no augmenting path with respect to f.

* Let (4, B) be a cut where A is the set of vertices connected to s by an

undirected path with no full forward or empty backward edges.

* By definition of cut, s is in A.

« Since no augmenting path, ¢ is in B.

» Capacity of cut = net flow across cut <— forward edges full; backward edges empty

= value of flow 1.

<«—— flow-value lemma

30

32



Computing a mincut from a maxflow

To compute mincut (4, B) from maxflow f :
« By augmenting path theorem, no augmenting paths with respect to f.
« Compute A = set of vertices connected to s by an undirected path
with no full forward or empty backward edges.

8/9
Q 2o cP/
N ~ 0/15
\0\ 0/4 /5\ / /0
v
5/5 8/8 10/10 t
4 ’y/ N\
P 0/15 o

6 N \
\ full forward edge
16—

3/ 4\ 6

/ /y
forward edge 16 /
(not full) empty backward edge

backward edge
(not empty) 33

Ford-Fulkerson algorithm

Ford-Fulkerson algorithm

Start with 0 flow.

While there exists an augmenting path:
- find an augmenting path
- compute bottleneck capacity

- increase flow on that path by bottleneck capacity

Questions.
« How to compute a mincut? Easy. ¢
« How to find an augmenting path? BFS works well.
 If FF terminates, does it always compute a maxflow? Yes. v
« Does FF always terminate? If so, after how many augmentations?

\ \

yes, provided edge capacities are integers requires clever analysis
(or augmenting paths are chosen carefully)

35

6.4 MAXIMUM FLow

Algorithms

» analysis of running time

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

Ford-Fulkerson algorithm with integer capacities

Important special case. Edge capacities are integers between 1 and U.

flow on each edge is an integer

Invariant. The flow is integer-valued throughout Ford-Fulkerson.
Pf. [by induction]

» Bottleneck capacity is an integer.

« Flow on an edge increases/decreases by bottleneck capacity.

Proposition. Number of augmentations =< the value of the maxflow.
Pf. Each augmentation increases the value by at least 1.

critical for some applications (stay tuned)

Integrality theorem. There exists an integer-valued maxflow.
Pf. Ford-Fulkerson terminates and maxflow that it finds is integer-valued.

36



Bad case for Ford-Fulkerson Bad case for Ford-Fulkerson

Bad news. Even when edge capacities are integers, number of augmenting Bad news. Even when edge capacities are integers, number of augmenting
paths could be equal to the value of the maxflow. paths could be equal to the value of the maxflow.
initialize with 0 flow 1st iteration
AN
Q QQ ) O «—— flow Q’QQ , 17
N 00 <«—— capacity AN 00

N
o Q o 4
7 Q 7 Q
00\ / \Q 00\\ / \0
O, ) ®
Bad case for Ford-Fulkerson Bad case for Ford-Fulkerson
Bad news. Even when edge capacities are integers, number of augmenting Bad news. Even when edge capacities are integers, number of augmenting
paths could be equal to the value of the maxflow. paths could be equal to the value of the maxflow.
2nd jteration 3rd jteration
v
N Q 2 7
\QQ /00 4 \QQ /00

39



Bad case for Ford-Fulkerson

Bad news. Even when edge capacities are integers, number of augmenting
paths could be equal to the value of the maxflow.

4th jteration

41

Bad case for Ford-Fulkerson

Bad news. Even when edge capacities are integers, number of augmenting
paths could be equal to the value of the maxflow.

199 jteration

Q
7
9,
Q )9
\Q 00
/ o 1 \
1 ﬁ
Q
9, \Q
N % N
(7] N

43

Bad case for Ford-Fulkerson

Bad news. Even when edge capacities are integers, number of augmenting
paths could be equal to the value of the maxflow.

42

Bad case for Ford-Fulkerson

Bad news. Even when edge capacities are integers, number of augmenting
paths could be equal to the value of the maxflow.

200t jteration

44



Bad case for Ford-Fulkerson

Bad news. Even when edge capacities are integers, number of augmenting
paths could be equal to the value of the maxflow.

N

can be exponential in input size

Good news. This case is easily avoided. [use shortest/fattest path]

Q 7
\Q QQ 7 00
N 00
0
1 >
Z Q
7 00 \Q
o OX
(% N

©

How to choose augmenting paths?

Choose augmenting paths with:

» Shortest path: fewest number of edges.
» Fattest path: max bottleneck capacity.

Theoretical Improvements in Algorithmic Efficiency

for Network Flow Problems

JACK EDMONDS
Universily of Waterloo, Waterloo, Ontario, Canada

AND

RICHARD M. KARP

University of California, Berkeley, California

apsnaer. This paper presents new algorithms for the maximum flow problem, the Hiteheock
transportation problem, and the general minimum-cost flow problem. Upper bounds on the

numbers of steps in these algorithms arc derived, and are shown to compare favorably with
upper bounds on the numbers of steps required by earlier algorithms.

Edmonds-Karp 1972 (USA)

Dokl. Akad. Nauk SSSR Soviet Math. Dokl.
Tom 194 (1970), No. 4 Vol. 11 (1970), No.5

ALGORITHM FOR SOLUTION OF A PROBLEM OF MAXIMUM FLOW IN A NETWORK WITH
POWER ESTIMATION

UDC 518.5
E. A. DINIC

Different variants of the formulation of the problem of maximal stationary flow in a network and
its many applications are given in [1]. There also is given an algorithm solving the problem in the
case where the initial data are integers (or, what is equivalent, commensurable). In the general case
this algorithm requires preliminary rounding off of the initial data, i.e. only an approximate solution

of the problem is possible. In this connection the rapidity of convergence of the algorithm is inverse-

1y ional to the relative

Dinic 1970 (Soviet Union)

How to choose augmenting paths?

Use care when selecting augmenting paths.
* Some choices lead to exponential algorithms.
» Clever choices lead to polynomial algorithms.

augmenting path number of paths implementation

random path <EU randomized queue
DFS path <EU stack (DFS)
shortest path <WEV queue (BFS)
fattest path <EIn(EU) priority queue

digraph with V vertices, E edges, and integer capacities between 1 and U

45 46

6.4 MAXIMUM FLOW

Algorithms

» Java implementation

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

47



Flow network representation

Flow edge data type.

Associate flow f. and capacity c. with edge e = v—w.

flow fe capacity ce

O— 75—

Flow network data type. Must be able to process edge e = v—w in either

direction: include e in adjacency lists of both v and w.

Residual (spare) capacity.

* Forward edge: residual capacity =c. - f..

* Backward edge: residual capacity = f..

Augment flow.

* Forward edge: add A.
* Backward edge: subtract A.

Flow edge API

residual capacity forward edge

[
/g\

backward edge

public class FlowEdge

FlowEdge(int v, int w, double capacity)

int from(Q)

int to(Q

int other(int v)

double capacity()

double flow()

double residualCapacityTo(int v)

void addResidualFlowTo(int v, double delta)

flow fe capacity ce

D715 —@)

create a flow edge v—w
vertex this edge points from
vertex this edge points to
other endpoint
capacity of this edge
flow in this edge
residual capacity toward v

add delta flow toward v

residual capacity forward edge

./
B
\7/Ci>

backward edge

49

51

Flow network representation

Residual network. A useful view of a flow network. «—

includes all edges with
positive residual capacity

original network / 9/9
W 4/4 e 0/15 "y
-
s 4/5 0/8 > 4/10 Pt

residual network

-/

N

|
.

s 1 8 >
4

backward edge

(not empty)
6 m—p
4
\ forward edge
(not full)

Key point. Augmenting paths in original network are in 1-1

correspondence with directed paths in residual network.

Flow edge: Java implementation

public class FlowEdge

{
// from and to

// capacity
// flow

private final int v, w;
private final double capacity;
private double flow;

public FlowEdge(int v, int w, double capacity)
{

this.v = V;

this.w = w;

this.capacity = capacity;

}

public int from() { return v; }
public int to() { return w; }
pubTlic double capacity() { return capacity; }
public double flow() { return flow; }

public int other(int vertex)

{
if (vertex == v) return w;
else if (vertex == w) return v;
else throw new IllegalArgumentException();

}

public double residualCapacityTo(int vertex)

public void addResidualFlowTo(int vertex, double delta)

<«——— flow variable
(mutable)

{...}

{...} «<— nextslide

50

52



Flow edge: Java implementation (continued) Flow network API

public double residualCapacityTo(int vertex) public class FlowNetwork

{

if ] (vertex == v) return flow; ) <«—— forward edge FlowNetwork(int V) create an empty flow network with V vertices

else if (vertex == w) return capacity - flow; < backward edge

else throw new ITlegalArgumentException(); FlowNetwork(In 1in) construct flow network input stream
}

void addEdge(FlowEdge e) add flow edge e to this flow network

public void addResidualFlowTo(int vertex, double delta) Iterable<FlowEdge> adj(int v) forward and backward edges incident to v
{

if (vertex == v) flow -= delta; ; §ed Iterable<FlowEdge> edges() all edges in this flow network

; <«—— forward edge

else if (vertex == w) flow += delta; backward edae . VO o

else throw new I1legalArgumentException(); g ot number of vertices
h int EQ number of edges

String toString(Q) string representation
residual capacity O P
flow fe capacity ce
Il . L
O— 1 —® |
Y Conventions. Allow self-loops and parallel edges.
™ backward edge
53 54
Flow network: Java implementation Flow network: adjacency-lists representation

oublic class FlonNetwork Maintain vertex-indexed array of FlowEdge lists (use Bag abstraction).

{

- : . . same as EdgeWeightedGraph,

E:XZE: E;gil1;:véd;é>[] adj; N
? FlowEdges instead of Edges tinyFN. txt references to thegame

public FlowNetwork(int V) V\G d'[/ \|0|2|3'0|1-0|_'|0|1|2-0|2-0‘/ Ho?’EdgeOb]w
{ E L '

this.V = Vs g‘l/zo 0_/ ~[1]4]1.0/0.0—~1]3]3.0[2.0~]0]1]2.0[2.0]

dj = (Bag<FlowEdge>[1) Bag[V]; o ‘|

h ('inta\g/<= 8‘” ngv; V:i‘;” a9 02 3.0 1 ~[2]4]1.0[1.0[2]3]1.0[0.0}~]0]2]3.0[1.0]

, 29I = new Bag<Flowkdge- O; 23 1o B0z o-2[3[1.0[0-0~{1]3[3.02.0]
24 1.0 _\
5 ~

public void addEdge(FlowEdge e) A _\ 4151300107~ 2 ] 4110110/~ 1]4]1.0[0.0
{ ~ \

int v = e fron0: l4]5]3.0[1.0—{3]5 |2.0J2.0| ogﬁgts

int w = e.to(Q);

adj[v].add(e); <«<——— add forward edge

adj[w].add(e); <«——  add backward edge
}
E”blliuﬁe;ﬁ}s;T;’WEdge} adj(int v) Note. Adjacency list includes edges with 0 residual capacity.

} (residual network is represented implicitly)

55 56



Finding a shortest augmenting path (cf. breadth-first search)

private boolean hasAugmentingPath(FlowNetwork G, int s, int t)

{
edgeTo = new FlowEdge[G.V()];
marked = new boolean[G.V()];
Queue<Integer> queue = new Queue<Integer>(Q);
queue.enqueue(s);
marked[s] = true;
while (!queue.isEmpty())
{
int v = queue.dequeue();
for (FlowEdge e : G.adj(v)) found path from s to w
{ in the residual network?
int w = e.other(v); x//
if (!marked[w] &&|(e.residualCapacityTo(w) > 0)|)
{
edgeTo[w] = e; save last edge on path to w;
marked[w] = true; <«—— mark w;
queue.enqueue(w) ; add w to the queue
}
3
}
return marked[t]; <«—— s treachable from s in residual network?
}

57

6.4 MAXIMUM FLOW

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

» applications

http://algs4.cs.princeton.edu

Ford-Fulkerson: Java implementation

public class FordFulkerson

{
private boolean[] marked; // true if s->v path in residual network
private FlowEdge[] edgeTo; // last edge on s->v path
private double value; // value of flow

public FordFulkerson(FlowNetwork G, int s, int t)
{ value = 0.0; — compute edgeTol[]
while (hasAugmentingPath(G, s, t)) compute
bottleneck capacity
double bottle = Double.POSITIVE_INFINITY;
for (int v = t; v !=s; v = edgeTo[v].other(v))
bottle = Math.min(bottle, edgeTo[v].residualCapacityTo(v));

for (int v = t; v !=s; v = edgeTo[v].other(v))
edgeTo[v].addResidualFlowTo(v, bottle);

value += bottle; augment flow

}
}

private boolean hasAugmentingPath(FlowNetwork G, int s, int t)
{ /* See previous slide. */ }

public double value()
{ return value; }

public boolean inCut(int v) <«——— isvreachable from s in residual network?
{ return marked[v]; }
}

Maxflow and mincut applications

Maxflow/mincut is a widely applicable problem-solving model.

« Data mining.

« Open-pit mining.

« Bipartite matching.
« Network reliability.
« Baseball elimination.

« Image segmentation.
. Network connectivity. liver and hepatic vascularization segmentation
 Distributed computing.

» Security of statistical data.

« Egalitarian stable matching.

« Multi-camera scene reconstruction.

« Sensor placement for homeland security.

« Many, many, more.

58

60



Bipartite matching problem

Network flow formulation of bipartite matching

N students apply for N jobs.

bipartite matching problem

1 Alice
Adobe
Amazon
Google

2 Bob
Adobe
Amazon

3 Carol
Adobe
Facebook
Google

4 Dave
Amazon
Yahoo

5 Eliza
Amazon
Yahoo

61

Create s, t, one vertex for each student, and one vertex for each job.

Add edge from s to each student (capacity 1).
Add edge from each job to ¢ (capacity 1).

Add edge from student to each job offered (infinite capacity).

flow network

®» © 0 O

®©

N students

G O O

©)

N companies

bipartite matching problem

1 Alice
Adobe
Amazon
Google

2 Bob
Adobe
Amazon

3 Carol
Adobe
Facebook
Google

4 Dave
Amazon
Yahoo

5 Eliza
Amazon
Yahoo

63

Bipartite matching problem

Given a bipartite graph, find a perfect matching.

perfect matching (solution)

Alice —— Google
Bob —— Adobe
Carol —— Facebook
Dave —— Yahoo
Eliza —— Amazon

bipartite graph

OENONN©

N students

= W ©

N companies

Network flow formulation of bipartite matching

bipartite matching problem

1 Alice
Adobe
Amazon
Google

2 Bob
Adobe
Amazon

3 Carol
Adobe
Facebook
Google

4 Dave
Amazon
Yahoo

5 Eliza
Amazon
Yahoo

1-1 correspondence between perfect matchings in bipartite graph and

integer-valued maxflows of value N.

flow network

00600

N students

N companies

bipartite matching problem

1 Alice
Adobe
Amazon
Google

2 Bob
Adobe
Amazon

3 Carol
Adobe
Facebook
Google

4 Dave
Amazon
Yahoo

5 Eliza
Amazon
Yahoo

62

64



What the mincut tells us

Goal. When no perfect matching, explain why.

© 6 ® © O

no perfect matching exists

Baseball elimination problem

® @ ©

© ©

S={2,4,5}
T={7,10}

student in S
can be matched
only to
companies in T

[SI>|T]|

Q. Which teams have a chance of finishing the season with the most wins?

Atlanta

0 A 83 71 8 - ! 6 !

Philly 80

2 \ New York 78

3 % Montreal 77

Montreal is mathematically eliminated.

79

78

82

» Montreal finishes with < 80 wins.

« Atlanta already has 83 wins.

65

67

What the mincut tells us

Mincut. Consider mincut (A, B).
e Let S =students on s side of cut.
e Let T = companies on s side of cut.

no perfect matching exists

Bottom line. When no perfect matching, mincut explains why.

Baseball elimination problem

* Fact: |S| >|T|; students in S can be matched only to companies in T.

S={2,4,5}
T={7,10}

student in S
can be matched
only to
companies in T

[SI>|T]I

66

Philadelphia is mathematically eliminated.
 Philadelphia finishes with < 83 wins.
« Either New York or Atlanta will finish with = 84 wins.

and left to play, but on whom they're against.

Q. Which teams have a chance of finishing the season with the most wins?

-
0 A 83 71 8 - ! 6 !

Observation. Answer depends not only on how many games already won

68



Baseball elimination problem

Q. Which teams have a chance of finishing the season with the most wins?

-m
0 @ New York 75 59 28 - 3 8 7 3

1 Baltimore 71 63 28 3 - 2 7 4

2 Boston 69 66 27 8 2 - 0 0

3 @ Toronto 63 72 27 7 7 0 - 0
Gl

4 Detroit 49 86 27 3 4 0 0 -

AL East (August 30, 1996)

Detroit is mathematically eliminated.
 Detroit finishes with < 76 wins.
« Wins for R = { NYY, BAL, BOS, TOR } = 278.
* Remaining games among { NYY, BAL, BOS, TOR } =3+8+7+2+7=27.
* Average team in R wins 305/4 = 76.25 games.

Maximum flow algorithms: theory

(Yet another) holy grail for theoretical computer scientists.

1951 simplex EU Dantzig
1955 augmenting path E2U Ford-Fulkerson
1970 shortest augmenting path E3 Dinitz, Edmonds-Karp
1970 fattest augmenting path E?log Elog(EU) Dinitz, Edmonds-Karp
1977 blocking flow E>52 Cherkasky
1978 blocking flow E3 Calil
1983 dynamic trees E?log E Sleator-Tarjan
1985 capacity scaling E?log U Gabow
1997 length function E32log Elog U Goldberg-Rao
2012 compact network E?/log E Orlin

? ? E ?

maxflow algorithms for sparse digraphs with E edges, integer capacities between 1 and U

69

71

Baseball elimination problem: maxflow formulation

Intuition. Remaining games flow from s to .

games left
between 1 and 2

team 2 can still win
@ this many more games

w/®

)
)

game vertices

(each pair of teams other than 4)

(===

)@— W4+I‘4—W2—)®

team vertices
(each team other than 4)

Fact. Team 4 not eliminated iff all edges pointing from s are full in maxflow.

Maximum flow algorithms: practice

Warning. Worst-case order-of-growth is generally not useful for predicting

or comparing maxflow algorithm performance in practice.

Best in practice. Push-relabel method with gap relabeling: £32.

On Implementing Push-Relabel Method
for the Maximum Flow Problem

Boris V. Cherkassky' and Andrew V. Goldberg?

! Central Institute for Economics and Mathematics,
Krasikova St. 32, 117418, Moscow, Russia
cher@cemi.msk.su
2 Computer Scicnce Department, Stanford University
Stanford, CA 94305, USA
goldberg@cs.stanford.edu

Abstract. We study efficient implementations of the push-relabel method
for the maximum flow problem. The resulting codes are faster than the
previous codes, and much faster on some problem families. The speedup
is due to the combination of heuristics used in our implementations. We
also exhibit a family of problems for which the running time of all known
methods seem to have a roughly quadratic growth rate.

EUROPEAN
JOURNAL

OF OPERATIONAL
RESEARCH

ELSEVIER European Joumal of Operational Research 97 (1997) 509542

Theory and Methodology
Computational investigations of maximum flow algorithms

Ravindra K. Ahuja *, Murali Kodialam b Ajay K. Mishra ¢, James B. Orlin **

Industrial and Management E: ogy. Kanpur, 208 016, India

" AT&T Bell Lal

raduate School of B
¢ Stoan School of Management. Massachusetts Institute of Technology. Cambridge.

15260. USA
. MA 02139, USA

Received 30 August 1995; accepted 27 June 1996

70

72



Summary

Mincut problem. Find an st-cut of minimum capacity.
Maxflow problem. Find an szflow of maximum value.
Duality. Value of the maxflow = capacity of mincut.

Proven successful approaches.
» Ford-Fulkerson (various augmenting-path strategies).
» Preflow-push (various versions).

Open research challenges.
o Practice: solve real-world maxflow/mincut problems in linear time.
» Theory: prove it for worst-case inputs.
« Still much to be learned!

73



