
ROBERT SEDGEWICK | KEVIN WAYNE

F O U R T H E D I T I O N

Algorithms

http://algs4.cs.princeton.edu

Algorithms ROBERT SEDGEWICK | KEVIN WAYNE

5.1 STRING SORTS

‣ strings in Java

‣ key-indexed counting

‣ LSD radix sort

‣ MSD radix sort

‣ 3-way radix quicksort

‣ suffix arrays http://algs4.cs.princeton.edu

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

‣ strings in Java

‣ key-indexed counting

‣ LSD radix sort

‣ MSD radix sort

‣ 3-way radix quicksort

‣ suffix arrays

5.1 STRING SORTS

3

String processing

String. Sequence of characters.

Important fundamental abstraction.

・Genomic sequences.

・Information processing.

・Communication systems (e.g., email).

・Programming systems (e.g., Java programs).

・…

“ The digital information that underlies biochemistry, cell

 biology, and development can be represented by a simple
 string of G's, A's, T's and C's. This string is the root data

 structure of an organism's biology. ” — M. V. Olson
0

4

The char data type

C char data type. Typically an 8-bit integer.

・Supports 7-bit ASCII.

・Can represent at most 256 characters.

Java char data type. A 16-bit unsigned integer.

・Supports original 16-bit Unicode.

・Supports 21-bit Unicode 3.0 (awkwardly).

6676.5 Q Data Compression

ASCII encoding. When you HexDump a bit-
stream that contains ASCII-encoded charac-
ters, the table at right is useful for reference.
Given a 2-digit hex number, use the first hex
digit as a row index and the second hex digit
as a column reference to find the character
that it encodes. For example, 31 encodes the
digit 1, 4A encodes the letter J, and so forth.
This table is for 7-bit ASCII, so the first hex
digit must be 7 or less. Hex numbers starting
with 0 and 1 (and the numbers 20 and 7F)
correspond to non-printing control charac-
ters. Many of the control characters are left over from the days when physical devices
like typewriters were controlled by ASCII input; the table highlights a few that you
might see in dumps. For example SP is the space character, NUL is the null character, LF
is line-feed, and CR is carriage-return.

In summary, working with data compression requires us to reorient our thinking about
standard input and standard output to include binary encoding of data. BinaryStdIn
and BinaryStdOut provide the methods that we need. They provide a way for you to
make a clear distinction in your client programs between writing out information in-
tended for file storage and data transmission (that will be read by programs) and print-
ing information (that is likely to be read by humans).

 0 1 2 3 4 5 6 7 8 9 A B C D E F

0 NUL SOH STX ETX EOT ENQ ACK BEL BS HT LF VT FF CR SO SI

1 DLE DC1 DC2 DC3 DC4 NAK SYN ETB CAN EM SUB ESC FS GS RS US

2 SP ! “ # $ % & ‘ () * + , - . /

3 0 1 2 3 4 5 6 7 8 9 : ; < = > ?

4 @ A B C D E F G H I J K L M N O

5 P Q R S T U V W X Y Z [\] ^ _

6 ` a b c d e f g h i j k l m n o

7 p q r s t u v w x y z { | } ~ DEL

Hexadecimal to ASCII conversion table

U+1D50AU+2202U+00E1U+0041

some Unicode characters

5

I ♥︎ Unicode

U+0041

String data type in Java. Immutable sequence of characters.

Length. Number of characters.

Indexing. Get the ith character.

Concatenation. Concatenate one string to the end of another.

6

The String data type

Fundamental constant-time String operations

0 1 2 3 4 5 6 7 8 9 10 11 12

A T T A C K A T D A W N s

s.charAt(3)

s.length()

s.substring(7, 11)

Q. Why immutable?

A. All the usual reasons.

・Can use as keys in symbol table.

・Don't need to defensively copy.

・Ensures consistent state.

・Supports concurrency.

・Improves security.

7

The String data type: immutability

public class FileInputStream
{
 private String filename;
 public FileInputStream(String filename)
 {
 if (!allowedToReadFile(filename))
 throw new SecurityException();
 this.filename = filename;
 }
 ...
}

attacker could bypass security if string type were mutable

8

The String data type: representation

Representation (Java 7). Immutable char[] array + cache of hash.

operation Java running time

length s.length() 1

indexing s.charAt(i) 1

concatenation s + t M + N

⋮ ⋮

9

String performance trap

Q. How to build a long string, one character at a time?

A. Use StringBuilder data type (mutable char[] array).

 public static String reverse(String s)
 {
 String rev = "";
 for (int i = s.length() - 1; i >= 0; i--)
 rev += s.charAt(i);
 return rev;
 }

quadratic time

 public static String reverse(String s)
 {
 StringBuilder rev = new StringBuilder();
 for (int i = s.length() - 1; i >= 0; i--)
 rev.append(s.charAt(i));
 return rev.toString();
 }

linear time

10

Comparing two strings

Q. How many character compares to compare two strings of length W ?

Running time. Proportional to length of longest common prefix.

・Proportional to W in the worst case.

・But, often sublinear in W.

p r e f i x e s

p r e f e t c h

0 1 2 3 4 5 6 7

Digital key. Sequence of digits over fixed alphabet.

Radix. Number of digits R in alphabet.

Alphabets

11

604 CHAPTER 6 ! Strings

holds the frequencies in Count is an example of a character-indexed array. With a Java
String, we have to use an array of size 256; with Alphabet, we just need an array with
one entry for each alphabet character. This savings might seem modest, but, as you will
see, our algorithms can produce huge numbers of such arrays, and the space for arrays
of size 256 can be prohibitive.

Numbers. As you can see from our several of the standard Alphabet examples, we of-
ten represent numbers as strings. The methods toIndices() coverts any String over
a given Alphabet into a base-R number represented as an int[] array with all values
between 0 and R!1. In some situations, doing this conversion at the start leads to com-
pact code, because any digit can be used as an index in a character-indexed array. For
example, if we know that the input consists only of characters from the alphabet, we
could replace the inner loop in Count with the more compact code

int[] a = alpha.toIndices(s);
for (int i = 0; i < N; i++)
 count[a[i]]++;

name R() lgR() characters

BINARY 2 1 01

OCTAL 8 3 01234567

DECIMAL 10 4 0123456789

HEXADECIMAL 16 4 0123456789ABCDEF

DNA 4 2 ACTG

LOWERCASE 26 5 abcdefghijklmnopqrstuvwxyz

UPPERCASE 26 5 ABCDEFGHIJKLMNOPQRSTUVWXYZ

PROTEIN 20 5 ACDEFGHIKLMNPQRSTVWY

BASE64 64 6
ABCDEFGHIJKLMNOPQRSTUVWXYZabcdef
ghijklmnopqrstuvwxyz0123456789+/

ASCII 128 7 ASCII characters

EXTENDED_ASCII 256 8 extended ASCII characters

UNICODE16 65536 16 Unicode characters

Standard alphabets

http://algs4.cs.princeton.edu

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

‣ strings in Java

‣ key-indexed counting

‣ LSD radix sort

‣ MSD radix sort

‣ 3-way radix quicksort

‣ suffix arrays

5.1 STRING SORTS

Review: summary of the performance of sorting algorithms

Frequency of operations.

Lower bound. ~ N lg N compares required by any compare-based algorithm.

Q. Can we do better (despite the lower bound)?

A. Yes, if we don't depend on key compares.
13

algorithm guarantee random extra space stable? operations on keys

insertion sort ½ N 2 ¼ N 2 1 ✔ compareTo()

mergesort N lg N N lg N N ✔ compareTo()

quicksort 1.39 N lg N * 1.39 N lg N c lg N compareTo()

heapsort 2 N lg N 2 N lg N 1 compareTo()

* probabilistic

use array accesses
to make R-way decisions

(instead of binary decisions)

Key-indexed counting: assumptions about keys

Assumption. Keys are integers between 0 and R - 1.

Implication. Can use key as an array index.

Applications.

・Sort string by first letter.

・Sort class roster by section.

・Sort phone numbers by area code.

・Subroutine in a sorting algorithm. [stay tuned]

Remark. Keys may have associated data ⇒

can't just count up number of keys of each value.

14

Anderson 2 Harris 1
Brown 3 Martin 1
Davis 3 Moore 1
Garcia 4 Anderson 2
Harris 1 Martinez 2
Jackson 3 Miller 2
Johnson 4 Robinson 2
Jones 3 White 2
Martin 1 Brown 3
Martinez 2 Davis 3
Miller 2 Jackson 3
Moore 1 Jones 3
Robinson 2 Taylor 3
Smith 4 Williams 3
Taylor 3 Garcia 4
Thomas 4 Johnson 4
Thompson 4 Smith 4
White 2 Thomas 4
Williams 3 Thompson 4
Wilson 4 Wilson 4

Typical candidate for key-indexed counting

input sorted result

keys are
small integers

section (by section) name

Goal. Sort an array a[] of N integers between 0 and R - 1.

・Count frequencies of each letter using key as index.

・Compute frequency cumulates which specify destinations.

・Access cumulates using key as index to move items.

・Copy back into original array.

 int N = a.length;
 int[] count = new int[R+1];

 for (int i = 0; i < N; i++)
 count[a[i]+1]++;

 for (int r = 0; r < R; r++)
 count[r+1] += count[r];

 for (int i = 0; i < N; i++)
 aux[count[a[i]]++] = a[i];

 for (int i = 0; i < N; i++)
 a[i] = aux[i];

15

Key-indexed counting demo

i a[i]

0 d

1 a

2 c

3 f

4 f

5 b

6 d

7 b

8 f

9 b

10 e

11 a

R = 6

0
1
2
3
4
5

a
b
c
d
e
f

use for
for
for
for
for
for

Goal. Sort an array a[] of N integers between 0 and R - 1.

・Count frequencies of each letter using key as index.

・Compute frequency cumulates which specify destinations.

・Access cumulates using key as index to move items.

・Copy back into original array.

 int N = a.length;
 int[] count = new int[R+1];

 for (int i = 0; i < N; i++)
 count[a[i]+1]++;

 for (int r = 0; r < R; r++)
 count[r+1] += count[r];

 for (int i = 0; i < N; i++)
 aux[count[a[i]]++] = a[i];

 for (int i = 0; i < N; i++)
 a[i] = aux[i];

a 0

b 2

c 3

d 1

e 2

f 1

- 3

16

Key-indexed counting demo

i a[i]

0 d

1 a

2 c

3 f

4 f

5 b

6 d

7 b

8 f

9 b

10 e

11 a

count
frequencies

offset by 1
[stay tuned]

r count[r]

Goal. Sort an array a[] of N integers between 0 and R - 1.

・Count frequencies of each letter using key as index.

・Compute frequency cumulates which specify destinations.

・Access cumulates using key as index to move items.

・Copy back into original array.

a 0

b 2

c 5

d 6

e 8

f 9

- 12

17

Key-indexed counting demo

i a[i]

0 d

1 a

2 c

3 f

4 f

5 b

6 d

7 b

8 f

9 b

10 e

11 a

r count[r]

compute
cumulates

 int N = a.length;
 int[] count = new int[R+1];

 for (int i = 0; i < N; i++)
 count[a[i]+1]++;

 for (int r = 0; r < R; r++)
 count[r+1] += count[r];

 for (int i = 0; i < N; i++)
 aux[count[a[i]]++] = a[i];

 for (int i = 0; i < N; i++)
 a[i] = aux[i];

 6 keys < d, 8 keys < e
so d’s go in a[6] and a[7]

Goal. Sort an array a[] of N integers between 0 and R - 1.

・Count frequencies of each letter using key as index.

・Compute frequency cumulates which specify destinations.

・Access cumulates using key as index to move items.

・Copy back into original array.

 int N = a.length;
 int[] count = new int[R+1];

 for (int i = 0; i < N; i++)
 count[a[i]+1]++;

 for (int r = 0; r < R; r++)
 count[r+1] += count[r];

 for (int i = 0; i < N; i++)
 aux[count[a[i]]++] = a[i];

 for (int i = 0; i < N; i++)
 a[i] = aux[i];

a 2

b 5

c 6

d 8

e 9

f 12

- 12

18

Key-indexed counting demo

i a[i]

0 d

1 a

2 c

3 f

4 f

5 b

6 d

7 b

8 f

9 b

10 e

11 a

move
items

0 a

1 a

2 b

3 b

4 b

5 c

6 d

7 d

8 e

9 f

10 f

11 f

r count[r]

i aux[i]

Goal. Sort an array a[] of N integers between 0 and R - 1.

・Count frequencies of each letter using key as index.

・Compute frequency cumulates which specify destinations.

・Access cumulates using key as index to move items.

・Copy back into original array.

 int N = a.length;
 int[] count = new int[R+1];

 for (int i = 0; i < N; i++)
 count[a[i]+1]++;

 for (int r = 0; r < R; r++)
 count[r+1] += count[r];

 for (int i = 0; i < N; i++)
 aux[count[a[i]]++] = a[i];

 for (int i = 0; i < N; i++)
 a[i] = aux[i];

a 2

b 5

c 6

d 8

e 9

f 12

- 12

19

Key-indexed counting demo

i a[i]

0 a

1 a

2 b

3 b

4 b

5 c

6 d

7 d

8 e

9 f

10 f

11 f
copy
back

0 a

1 a

2 b

3 b

4 b

5 c

6 d

7 d

8 e

9 f

10 f

11 f

r count[r]

i aux[i]

Key-indexed counting: analysis

Proposition. Key-indexed takes time proportional to N + R.

Proposition. Key-indexed counting uses extra space proportional to N + R.

Stable?

20

Anderson 2 Harris 1
Brown 3 Martin 1
Davis 3 Moore 1
Garcia 4 Anderson 2
Harris 1 Martinez 2
Jackson 3 Miller 2
Johnson 4 Robinson 2
Jones 3 White 2
Martin 1 Brown 3
Martinez 2 Davis 3
Miller 2 Jackson 3
Moore 1 Jones 3
Robinson 2 Taylor 3
Smith 4 Williams 3
Taylor 3 Garcia 4
Thomas 4 Johnson 4
Thompson 4 Smith 4
White 2 Thomas 4
Williams 3 Thompson 4
Wilson 4 Wilson 4

Distributing the data (records with key 3 highlighted)

 count[]
1 2 3 4
0 3 8 14
0 4 8 14
0 4 9 14
0 4 10 14
0 4 10 15
1 4 10 15
1 4 11 15
1 4 11 16
1 4 12 16
2 4 12 16
2 5 12 16
2 6 12 16
3 6 12 16
3 7 12 16
3 7 12 17
3 7 13 17
3 7 13 18
3 7 13 19
3 8 13 19
3 8 14 19
3 8 14 20

 a[0]

 a[1]

 a[2]

 a[3]

 a[4]

 a[5]

 a[6]

 a[7]

 a[8]

 a[9]

a[10]

a[11]

a[12]

a[13]

a[14]

a[15]

a[16]

a[17]

a[18]

a[19]

aux[0]

aux[1]

aux[2]

aux[3]

aux[4]

aux[5]

aux[6]

aux[7]

aux[8]

aux[9]

aux[10]

aux[11]

aux[12]

aux[13]

aux[14]

aux[15]

aux[16]

aux[17]

aux[18]

aux[19]

for (int i = 0; i < N; i++)
 aux[count[a[i].key(d)]++] = a[i];

✔

http://algs4.cs.princeton.edu

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

‣ strings in Java

‣ key-indexed counting

‣ LSD radix sort

‣ MSD radix sort

‣ 3-way radix quicksort

‣ suffix arrays

5.1 STRING SORTS

Least-significant-digit-first string sort

LSD string (radix) sort.

・Consider characters from right to left.

・Stably sort using dth character as the key (using key-indexed counting).

22

0 d a b

1 a d d

2 c a b

3 f a d

4 f e e

5 b a d

6 d a d

7 b e e

8 f e d

9 b e d

10 e b b

11 a c e

0 d a b

1 c a b

2 f a d

3 b a d

4 d a d

5 e b b

6 a c e

7 a d d

8 f e d

9 b e d

10 f e e

11 b e e

sort key (d = 1)

0 a c e

1 a d d

2 b a d

3 b e d

4 b e e

5 c a b

6 d a b

7 d a d

8 e b b

9 f a d

10 f e d

11 f e e

sort key (d = 0)

0 d a b

1 c a b

2 e b b

3 a d d

4 f a d

5 b a d

6 d a d

7 f e d

8 b e d

9 f e e

10 b e e

11 a c e

sort is stable
(arrows do not cross)

sort key (d = 2)

23

LSD string sort: correctness proof

Proposition. LSD sorts fixed-length strings in ascending order.

Pf. [by induction on i]

After pass i, strings are sorted by last i characters.

・If two strings differ on sort key,

key-indexed sort puts them in proper

relative order.

・If two strings agree on sort key,

stability keeps them in proper relative order.

Proposition. LSD sort is stable.

Pf. Key-indexed counting is stable.

0 d a b

1 c a b

2 f a d

3 b a d

4 d a d

5 e b b

6 a c e

7 a d d

8 f e d

9 b e d

10 f e e

11 b e e

0 a c e

1 a d d

2 b a d

3 b e d

4 b e e

5 c a b

6 d a b

7 d a d

8 e b b

9 f a d

10 f e d

11 f e e

sorted from
previous passes
(by induction)

sort key

24

LSD string sort: Java implementation

key-indexed counting

public class LSD
{
 public static void sort(String[] a, int W)
 {
 int R = 256;
 int N = a.length;
 String[] aux = new String[N];

 for (int d = W-1; d >= 0; d--)
 {
 int[] count = new int[R+1];
 for (int i = 0; i < N; i++)
 count[a[i].charAt(d) + 1]++;
 for (int r = 0; r < R; r++)
 count[r+1] += count[r];
 for (int i = 0; i < N; i++)
 aux[count[a[i].charAt(d)]++] = a[i];
 for (int i = 0; i < N; i++)
 a[i] = aux[i];
 }
 }
}

do key-indexed counting
for each digit from right to left

radix R

fixed-length W strings

Summary of the performance of sorting algorithms

Frequency of operations.

Q. What if strings are not all of same length?

25

algorithm guarantee random extra space stable? operations on keys

insertion sort ½ N 2 ¼ N 2 1 ✔ compareTo()

mergesort N lg N N lg N N ✔ compareTo()

quicksort 1.39 N lg N * 1.39 N lg N c lg N compareTo()

heapsort 2 N lg N 2 N lg N 1 compareTo()

LSD sort † 2 W (N + R) 2 W (N + R) N + R ✔ charAt()

* probabilistic
† fixed-length W keys

26

String sorting interview question

Problem. Sort one million 32-bit integers.

Ex. Google (or presidential) interview.

Which sorting method to use?

・Insertion sort.

・Mergesort.

・Quicksort.

・Heapsort.

・LSD string sort.

27

String sorting interview question

Google CEO Eric Schmidt interviews Barack Obama
28

How to take a census in 1900s?

1880 Census. Took 1500 people 7 years to manually process data.

Herman Hollerith. Developed counting and sorting machine to automate.

・Use punch cards to record data (e.g., gender, age).

・Machine sorts one column at a time (into one of 12 bins).

・Typical question: how many women of age 20 to 30?

1890 Census. Finished in 1 year (and under budget)!

punch card (12 holes per column)Hollerith tabulating machine and sorter

29

How to get rich sorting in 1900s?

Punch cards. [1900s to 1950s]

・Also useful for accounting, inventory, and business processes.

・Primary medium for data entry, storage, and processing.

Hollerith's company later merged with 3 others to form Computing

Tabulating Recording Corporation (CTRC); company renamed in 1924.

IBM 80 Series Card Sorter (650 cards per minute)

LSD string sort: a moment in history (1960s)

30

card punch punched cards card reader mainframe line printer

Lysergic Acid Diethylamide
(Lucy in the Sky with Diamonds)

not directly related
to sorting

To sort a card deck

 - start on right column

 - put cards into hopper

 - machine distributes into bins

 - pick up cards (stable)

 - move left one column

 - continue until sorted

card sorter

http://algs4.cs.princeton.edu

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

‣ strings in Java

‣ key-indexed counting

‣ LSD radix sort

‣ MSD radix sort

‣ 3-way radix quicksort

‣ suffix arrays

5.1 STRING SORTS

Reverse LSD

・Consider characters from left to right.

・Stably sort using dth character as the key (using key-indexed counting).

32

0 d a b

1 a d d

2 c a b

3 f a d

4 f e e

5 b a d

6 d a d

7 b e e

8 f e d

9 b e d

10 e b b

11 a c e

0 b a d

1 c a b

2 d a b

3 d a d

4 f a d

5 e b b

6 a c e

7 a d d

8 b e e

9 b e d

10 f e e

11 f e d

sort key (d = 1)

0 c a b

1 d a b

2 e b b

3 b a d

4 d a d

5 f a d

6 a d d

7 b e d

8 f e d

9 a c e

10 b e e

11 f e e

sort key (d = 2)

0 a d d

1 a c e

2 b a d

3 b e e

4 b e d

5 c a b

6 d a b

7 d a d

8 e b b

9 f a d

10 f e e

11 f e d

sort key (d = 0)

not sorted!

33

MSD string (radix) sort.

・Partition array into R pieces according to first character

(use key-indexed counting).

・Recursively sort all strings that start with each character

(key-indexed counts delineate subarrays to sort).

Most-significant-digit-first string sort

0 d a b

1 a d d

2 c a b

3 f a d

4 f e e

5 b a d

6 d a d

7 b e e

8 f e d

9 b e d

10 e b b

11 a c e

0 a d d

1 a c e

2 b a d

3 b e e

4 b e d

5 c a b

6 d a b

7 d a d

8 e b b

9 f a d

10 f e e

11 f e d

sort key

0 a d d

1 a c e

2 b a d

3 b e e

4 b e d

5 c a b

6 d a b

7 d a d

8 e b b

9 f a d

10 f e e

11 f e d

sort subarrays
recursively

count[]

a 0

b 2

c 5

d 6

e 8

f 9

- 12

34

MSD string sort: example

she
sells
seashells
by
the
sea
shore
the
shells
she
sells
are
surely
seashells

are
by
she
sells
seashells
sea
shore
shells
she
sells
surely
seashells
the
the

are
by
sells
seashells
sea
sells
seashells
she
shore
shells
she
surely
the
the

input

are
by
sea
seashells
seashells
sells
sells
she
she
shells
shore
surely
the
the

output

are
by
seashells
sea
seashells
sells
sells
she
shore
shells
she
surely
the
the

are
by
sea
seashells
seashells
sells
sells
she
shore
shells
she
surely
the
the

are
by
sea
seashells
seashells
sells
sells
she
shore
shells
she
surely
the
the

are
by
sea
seashells
seashells
sells
sells
she
shore
shells
she
surely
the
the

are
by
seas
seashells
seashells
sells
sells
she
shore
shore
she
surely
the
the

are
by
sea
seashells
seashells
sells
sells
she
shore
shells
she
surely
the
the

are
by
sea
seashells
seashells
sells
sells
she
shore
shells
she
surely
the
the

are
by
sea
seashells
seashells
sells
sells
she
sshore
hells
she
surely
the
the

are
by
sea
seashells
seashells
sells
sells
she
shore
shells
she
surely
the
the

are
by
sea
seashells
seashells
sells
sells
she
shells
she
shore
surely
the
the

are
by
sea
seashells
seashells
sells
sells
she
she
shells
shore
surely
the
the

are
by
sea
seashells
seashells
sells
sells
she
she
shells
shore
surely
the
the

are
by
sea
seashells
seashells
sells
sells
she
she
shells
shore
surely
the
the

Trace of recursive calls for MSD string sort (no cutoff for small subarrays, subarrays of size 0 and 1 omitted)

end of string
goes before any

char value

need to examine
every character
in equal keys

d

lo

hi

Variable-length strings

Treat strings as if they had an extra char at end (smaller than any char).

C strings. Have extra char '\0' at end ⇒ no extra work needed.
35

0 s e a -1

1 s e a s h e l l s -1

2 s e l l s -1

3 s h e -1

4 s h e -1

5 s h e l l s -1

6 s h o r e -1

7 s u r e l y -1

she before shells

private static int charAt(String s, int d)
{
 if (d < s.length()) return s.charAt(d);
 else return -1;
}

why smaller?

36

MSD string sort: Java implementation

public static void sort(String[] a)
{
 aux = new String[a.length];
 sort(a, aux, 0, a.length - 1, 0);
}

private static void sort(String[] a, String[] aux, int lo, int hi, int d)
{
 if (hi <= lo) return;
 int[] count = new int[R+2];
 for (int i = lo; i <= hi; i++)
 count[charAt(a[i], d) + 2]++;
 for (int r = 0; r < R+1; r++)
 count[r+1] += count[r];
 for (int i = lo; i <= hi; i++)
 aux[count[charAt(a[i], d) + 1]++] = a[i];
 for (int i = lo; i <= hi; i++)
 a[i] = aux[i - lo];

 for (int r = 0; r < R; r++)
 sort(a, aux, lo + count[r], lo + count[r+1] - 1, d+1);
}

key-indexed counting

sort R subarrays recursively

recycles aux[] array
but not count[] array

37

MSD string sort: potential for disastrous performance

Observation 1. Much too slow for small subarrays.

・Each function call needs its own count[] array.

・ASCII (256 counts): 100x slower than copy pass for N = 2.

・Unicode (65,536 counts): 32,000x slower for N = 2.

Observation 2. Huge number of small subarrays

because of recursion.

a[]

0 b

1 a

count[]

aux[]

0 a

1 b

Solution. Cutoff to insertion sort for small subarrays.

・Insertion sort, but start at dth character.

・Implement less() so that it compares starting at dth character.

private static boolean less(String v, String w, int d)
 {
 for (int i = d; i < Math.min(v.length(), w.length()); i++)
 {
 if (v.charAt(i) < w.charAt(i)) return true;
 if (v.charAt(i) > w.charAt(i)) return false;
 }
 return v.length() < w.length();
 }

38

Cutoff to insertion sort

 private static void sort(String[] a, int lo, int hi, int d)
 {
 for (int i = lo; i <= hi; i++)
 for (int j = i; j > lo && less(a[j], a[j-1], d); j--)
 exch(a, j, j-1);
 }

Number of characters examined.

・MSD examines just enough characters to sort the keys.

・Number of characters examined depends on keys.

・Can be sublinear in input size!

39

 MSD string sort: performance

1EIO402
1HYL490
1ROZ572
2HXE734
2IYE230
2XOR846
3CDB573
3CVP720
3IGJ319
3KNA382
3TAV879
4CQP781
4QGI284
4YHV229

1DNB377
1DNB377
1DNB377
1DNB377
1DNB377
1DNB377
1DNB377
1DNB377
1DNB377
1DNB377
1DNB377
1DNB377
1DNB377
1DNB377

Non-random
with duplicates
(nearly linear)

Random
(sublinear)

Worst case
(linear)

Characters examined by MSD string sort

are
by
sea
seashells
seashells
sells
sells
she
she
shells
shore
surely
the
the

compareTo() based sorts
can also be sublinear!

Summary of the performance of sorting algorithms

Frequency of operations.

40

algorithm guarantee random extra space stable? operations on keys

insertion sort ½ N 2 ¼ N 2 1 ✔ compareTo()

mergesort N lg N N lg N N ✔ compareTo()

quicksort 1.39 N lg N * 1.39 N lg N c lg N compareTo()

heapsort 2 N lg N 2 N lg N 1 compareTo()

LSD sort † 2 W (N + R) 2 W (N + R) N + R ✔ charAt()

MSD sort ‡ 2 W (N + R) N log R N N + D R ✔ charAt()

* probabilistic
† fixed-length W keys
‡ average-length W keys

D = function-call stack depth
(length of longest prefix match)

41

MSD string sort vs. quicksort for strings

Disadvantages of MSD string sort.

・Extra space for aux[].

・Extra space for count[].

・Inner loop has a lot of instructions.

・Accesses memory "randomly" (cache inefficient).

Disadvantage of quicksort.

・Linearithmic number of string compares (not linear).

・Has to rescan many characters in keys with long prefix matches.

Goal. Combine advantages of MSD and quicksort.

doesn't rescan
characters

tight inner loop,
cache friendly

Optimization 0. Cutoff to insertion sort.

Optimization 1. Replace recursion with explicit stack.

・Push subarrays to be sorted onto stack.

・Now, one count[] array suffices.

Optimization 2. Do R-way partitioning in place.

・Eliminates aux[] array.

・Sacrifices stability.

42

Engineering a radix sort (American flag sort)

Engineering Radix Sort
Peter M. Mcllroy and Keith Bostic

University of California at Berkeley;

and M. Douglas Mcllroy
AT&T Bell Laboratories

ABSTRACT Radix sorting methods have excellent
asymptotic performance on string data, for which com-
parison is not a unit-time operation. Attractive for use
in large byte-addressable memories, these methods
have nevertheless long been eclipsed by more easily
prograÍrmed algorithms. Three ways to sort strings by
bytes left to right-a stable list sort, a stable two-array
sort, and an in-place "American flag" sor¿-are illus-
trated with practical C programs. For heavy-duty sort-
ing, all three perform comparably, usually running at
least twice as fast as a good quicksort. We recommend
American flag sort for general use.

@ Computing Systems, Vol. 6 . No. 1 . Winter 1993

American national flag problem Dutch national flag problem

http://algs4.cs.princeton.edu

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

‣ strings in Java

‣ key-indexed counting

‣ LSD radix sort

‣ MSD radix sort

‣ 3-way radix quicksort

‣ suffix arrays

5.1 STRING SORTS she

sells

seashells

by

the

sea

shore

the

shells

she

sells

are

surely

seashells

Overview. Do 3-way partitioning on the dth character.

・Less overhead than R-way partitioning in MSD string sort.

・Does not re-examine characters equal to the partitioning char.

(but does re-examine characters not equal to the partitioning char)

44

3-way string quicksort (Bentley and Sedgewick, 1997)

partitioning item

use first character to
partition into

"less", "equal", and "greater"
subarrays

recursively sort subarrays,
excluding first character

for middle subarray

by

are

seashells

she

seashells

sea

shore

surely

shells

she

sells

sells

the

the

she

sells

seashells

by

the

sea

shore

the

shells

she

sells

are

surely

seashells

45

3-way string quicksort: trace of recursive calls

by

are

seashells

she

seashells

sea

shore

surely

shells

she

sells

sells

the

the

Trace of first few recursive calls for 3-way string quicksort (subarrays of size 1 not shown)

partitioning item

are

by

seashells

she

seashells

sea

shore

surely

shells

she

sells

sells

the

the

are

by

seashells

sea

seashells

sells

sells

shells

she

surely

shore

she

the

the

are

by

seashells

sells

seashells

sea

sells

shells

she

surely

shore

she

the

the

46

3-way string quicksort: Java implementation

 private static void sort(String[] a)
 { sort(a, 0, a.length - 1, 0); }

 private static void sort(String[] a, int lo, int hi, int d)
 {
 if (hi <= lo) return;
 int lt = lo, gt = hi;
 int v = charAt(a[lo], d);
 int i = lo + 1;
 while (i <= gt)
 {
 int t = charAt(a[i], d);
 if (t < v) exch(a, lt++, i++);
 else if (t > v) exch(a, i, gt--);
 else i++;
 }

 sort(a, lo, lt-1, d);
 if (v >= 0) sort(a, lt, gt, d+1);
 sort(a, gt+1, hi, d);
 }

3-way partitioning
(using dth character)

sort 3 subarrays recursively

to handle variable-length strings

Standard quicksort.

・Uses ~ 2 N ln N string compares on average.

・Costly for keys with long common prefixes (and this is a common case!)

3-way string (radix) quicksort.

・Uses ~ 2 N ln N character compares on average for random strings.

・Avoids re-comparing long common prefixes.

47

3-way string quicksort vs. standard quicksort

Jon L. Bentley* Robert Sedgewick#

Abstract
We present theoretical algorithms for sorting and

searching multikey data, and derive from them practical C
implementations for applications in which keys are charac-
ter strings. The sorting algorithm blends Quicksort and
radix sort; it is competitive with the best known C sort
codes. The searching algorithm blends tries and binary
search trees; it is faster than hashing and other commonly
used search methods. The basic ideas behind the algo-
rithms date back at least to the 1960s but their practical
utility has been overlooked. We also present extensions to
more complex string problems, such as partial-match
searching.

1. Introduction
Section 2 briefly reviews Hoare’s [9] Quicksort and

binary search trees. We emphasize a well-known isomor-
phism relating the two, and summarize other basic facts.

The multikey algorithms and data structures are pre-
sented in Section 3. Multikey Quicksort orders a set of II
vectors with k components each. Like regular Quicksort, it
partitions its input into sets less than and greater than a
given value; like radix sort, it moves on to the next field
once the current input is known to be equal in the given
field. A node in a ternary search tree represents a subset of
vectors with a partitioning value and three pointers: one to
lesser elements and one to greater elements (as in a binary
search tree) and one to equal elements, which are then pro-
cessed on later fields (as in tries). Many of the structures
and analyses have appeared in previous work, but typically
as complex theoretical constructions, far removed from
practical applications. Our simple framework opens the
door for later implementations.

The algorithms are analyzed in Section 4. Many of the
analyses are simple derivations of old results.

Section 5 describes efficient C programs derived from
the algorithms. The first program is a sorting algorithm

Fast Algorithms for Sorting and Searching Strings

that is competitive with the most efficient string sorting
programs known. The second program is a symbol table
implementation that is faster than hashing, which is com-
monly regarded as the fastest symbol table implementa-
tion. The symbol table implementation is much more
space-efficient than multiway trees, and supports more
advanced searches.

In many application programs, sorts use a Quicksort
implementation based on an abstract compare operation,
and searches use hashing or binary search trees. These do
not take advantage of the properties of string keys, which
are widely used in practice. Our algorithms provide a nat-
ural and elegant way to adapt classical algorithms to this
important class of applications.

Section 6 turns to more difficult string-searching prob-
lems. Partial-match queries allow “don’t care” characters
(the pattern “so.a”, for instance, matches soda and sofa).
The primary result in this section is a ternary search tree
implementation of Rivest’s partial-match searching algo-
rithm, and experiments on its performance. “Near neigh-
bor” queries locate all words within a given Hamming dis-
tance of a query word (for instance, code is distance 2
from soda). We give a new algorithm for near neighbor
searching in strings, present a simple C implementation,
and describe experiments on its efficiency.

Conclusions are offered in Section 7.

2. Background
Quicksort is a textbook divide-and-conquer algorithm.

To sort an array, choose a partitioning element, permute
the elements such that lesser elements are on one side and
greater elements are on the other, and then recursively sort
the two subarrays. But what happens to elements equal to
the partitioning value? Hoare’s partitioning method is
binary: it places lesser elements on the left and greater ele-
ments on the right, but equal elements may appear on
either side.

* Bell Labs, Lucent Technologies, 700 Mountam Avenue, Murray Hill.
NJ 07974; jlb@research.bell-labs.com.

Princeton University. Princeron. NJ. 08514: rs@cs.princeton.edu.

Algorithm designers have long recognized the desir-
irbility and difficulty of a ternary partitioning method.
Sedgewick [22] observes on page 244: “Ideally, we would
llke to get all [equal keys1 into position in the file, with all

360

48

3-way string quicksort vs. MSD string sort

MSD string sort.

・Is cache-inefficient.

・Too much memory storing count[].

・Too much overhead reinitializing count[] and aux[].

3-way string quicksort.

・Is cache-friendly.

・Is in-place.

・Has a short inner loop.

Bottom line. 3-way string quicksort is method of choice for sorting strings.

library of Congress call numbers

Summary of the performance of sorting algorithms

Frequency of operations.

49

algorithm guarantee random extra space stable? operations on keys

insertion sort ½ N 2 ¼ N 2 1 ✔ compareTo()

mergesort N lg N N lg N N ✔ compareTo()

quicksort 1.39 N lg N * 1.39 N lg N c lg N compareTo()

heapsort 2 N lg N 2 N lg N 1 compareTo()

LSD sort † 2 W (N + R) 2 W (N + R) N + R ✔ charAt()

MSD sort ‡ 2 W (N + R) N log R N N + D R ✔ charAt()

3-way string
quicksort 1.39 W N lg R * 1.39 N lg N log N + W charAt()

* probabilistic
† fixed-length W keys
‡ average-length W keys

http://algs4.cs.princeton.edu

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

‣ strings in Java

‣ key-indexed counting

‣ LSD radix sort

‣ MSD radix sort

‣ 3-way radix quicksort

‣ suffix arrays

5.1 STRING SORTS

Given a text of N characters, preprocess it to enable fast substring search

(find all occurrences of query string context).

Applications. Linguistics, databases, web search, word processing, ….

% more tale.txt
it was the best of times
it was the worst of times
it was the age of wisdom
it was the age of foolishness
it was the epoch of belief
it was the epoch of incredulity
it was the season of light
it was the season of darkness
it was the spring of hope
it was the winter of despair
 ⋮

51

Keyword-in-context search

Given a text of N characters, preprocess it to enable fast substring search

(find all occurrences of query string context).

Applications. Linguistics, databases, web search, word processing, ….

% java KWIC tale.txt 15
search
o st giless to search for contraband
her unavailing search for your fathe
le and gone in search of her husband
t provinces in search of impoverishe
 dispersing in search of other carri
n that bed and search the straw hold

better thing
t is a far far better thing that i do than
 some sense of better things else forgotte
was capable of better things mr carton ent

52

Keyword-in-context search

characters of
surrounding context

53

Suffix sort

i t w a s b e s t i t w a s w
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

input string

0 i t w a s b e s t i t w a s w
1 t w a s b e s t i t w a s w
2 w a s b e s t i t w a s w
3 a s b e s t i t w a s w
4 s b e s t i t w a s w
5 b e s t i t w a s w
6 e s t i t w a s w
7 s t i t w a s w
8 t i t w a s w
9 i t w a s w
10 t w a s w
11 w a s w
12 a s w
13 s w
14 w

form suffixes

3 a s b e s t
12 a s w
5 b e s t i t w a s w
6 e s t i t w a s w
0 i t w a s b e s t i t w a s w
9 i t w a s w
4 s b e s t i t w a s w
7 s t i t w a s w
13 s w
8 t i t w a s w
1 t w a s b e s t i t w a s w
10 t w a s w
14 w
2 w a s b e s t i t w a s w
11 w a s w

sort suffixes to bring query strings together

array of suffix indices
in sorted order

・Preprocess: suffix sort the text.

・Query: binary search for query; scan until mismatch.

54

Keyword-in-context search: suffix-sorting solution

⋮
632698 s e a l e d _ m y _ l e t t e r _ a n d _ …
713727 s e a m s t r e s s _ i s _ l i f t e d _ …
660598 s e a m s t r e s s _ o f _ t w e n t y _ …
67610 s e a m s t r e s s _ w h o _ w a s _ w i …
4430 s e a r c h _ f o r _ c o n t r a b a n d …
42705 s e a r c h _ f o r _ y o u r _ f a t h e …
499797 s e a r c h _ o f _ h e r _ h u s b a n d …
182045 s e a r c h _ o f _ i m p o v e r i s h e …
143399 s e a r c h _ o f _ o t h e r _ c a r r i …
411801 s e a r c h _ t h e _ s t r a w _ h o l d …
158410 s e a r e d _ m a r k i n g _ a b o u t _ …
691536 s e a s _ a n d _ m a d a m e _ d e f a r …
536569 s e a s e _ a _ t e r r i b l e _ p a s s …
484763 s e a s e _ t h a t _ h a d _ b r o u g h …

⋮

KWIC search for "search" in Tale of Two Cities

55

War story

Q. How to efficiently form (and sort) suffixes?

String[] suffixes = new String[N];

for (int i = 0; i < N; i++)
 suffixes[i] = s.substring(i, N);

Arrays.sort(suffixes);
ROBERT SEDGEWICK | KEVIN WAYNE

F O U R T H E D I T I O N

Algorithms

3rd printing

input file characters Java 7u4 Java 7u5

amendments.txt 18 thousand 0.25 sec 2.0 sec

aesop.txt 192 thousand 1.0 sec out of memory

mobydick.txt 1.2 million 7.6 sec out of memory

chromosome11.txt 7.1 million 61 sec out of memory

56

The String data type: Java 7u5 implementation

public final class String implements Comparable<String>
{
 private char[] value; // characters
 private int offset; // index of first char in array
 private int length; // length of string
 private int hash; // cache of hashCode()
 …

H E L L O , W O R L D

0 1 2 3 4 5 6 7 8 9 10 11

value[]

offset = 0

length = 12String s = "Hello, World"

H E L L O , W O R L D

0 1 2 3 4 5 6 7 8 9 10 11

value[]

offset = 7

length = 5String t = s.substring(7, 12);

57

The String data type: Java 7u6 implementation

public final class String implements Comparable<String>
{
 private char[] value; // characters
 private int hash; // cache of hashCode()
 …

H E L L O , W O R L D

0 1 2 3 4 5 6 7 8 9 10 11

value[]

String s = "Hello, World"

W O R L D

0 1 2 3 4

value[]

String t = s.substring(7, 12);

58

The String data type: performance

String data type (in Java). Sequence of characters (immutable).

Java 7u5. Immutable char[] array, offset, length, hash cache.

Java 7u6. Immutable char[] array, hash cache.

operation Java 7u5 Java 7u6

length 1 1

indexing 1 1

substring extraction 1 N

concatenation M + N M + N

immutable? ✔ ✔

memory 64 + 2N 56 + 2N

59

A Reddit exchange

I'm the author of the substring() change. As has

been suggested in the analysis here there were two
motivations for the change

• Reduce the size of String instances. Strings
are typically 20-40% of common apps footprint.

• Avoid memory leakage caused by retained
substrings holding the entire character array.

bondolo

http://www.reddit.com/r/programming/comments/1qw73v/til_oracle_changed_the_internal_string

Changing this function, in a bugfix release no

less, was totally irresponsible. It broke backwards
compatibility for numerous applications with errors

that didn't even produce a message, just freezing
and timeouts... All pain, no gain. Your work was

not just vain, it was thoroughly destructive, even
beyond its immediate effect.

cypherpunks

60

Suffix sort

Q. How to efficiently form (and sort) suffixes in Java 7u6?

A. Define Suffix class ala Java 7u5 String.

public class Suffix implements Comparable<Suffix>
{
 private final String text;
 private final int offset;
 public Suffix(String s, int offset)
 {
 this.text = text;
 this.offset = offset;
 }
 public int length() { return text.length() - offset; }
 public char charAt(int i) { return text.charAt(offset + i); }
 public int compareTo(Suffix that) { /* see textbook */ }
}

H E L L O , W O R L D

0 1 2 3 4 5 6 7 8 9 10 11

text[]

offset

61

Suffix sort

Q. How to efficiently form (and sort) suffixes in Java 7u6?

A. Define Suffix class ala Java 7u5 String.

String[] suffixes = new String[N];

for (int i = 0; i < N; i++)
 suffixes[i] = new Suffix(s, i);

Arrays.sort(suffixes);
ROBERT SEDGEWICK | KEVIN WAYNE

F O U R T H E D I T I O N

Algorithms

4th printing

Lesson 1. Put performance guarantees in API.

Lesson 2. If API has no performance guarantees, don't rely upon any!

Corollary. May want to avoid String data type for huge strings.

・Are you sure charAt() and length() take constant time?

・If lots of calls to charAt(), overhead for function calls is large.

・If lots of small strings, memory overhead of String is large.

Ex. Our optimized algorithm for suffix arrays is 5x faster and uses

32x less memory than our original solution in Java 7u5!

62

Lessons learned

63

Suffix Arrays: theory

Q. What is worst-case running time of our suffix arrays algorithm?

・Quadratic.

・Linearithmic.

・Linear.

・None of the above. N2 log N

0 a a a a a a a a a a
1 a a a a a a a a a
2 a a a a a a a a
3 a a a a a a a
4 a a a a a a
5 a a a a a
6 a a a a
7 a a a
8 a a
9 a

suffixes

64

Suffix Arrays: theory

Q. What is complexity of suffix arrays?

・Quadratic.

・Linearithmic.

・Linear.

・Nobody knows.

suffix trees (beyond our scope)✓

Manber-Myers algorithm (see video)

Suffix arrays:
A new method for on-line string searches

Udi Manber1

Gene Myers2

Department of Computer Science
University of Arizona
Tucson, AZ 85721

May 1989
Revised August 1991

Abstract

A new and conceptually simple data structure, called a suffix array, for on-line string searches is intro-
duced in this paper. Constructing and querying suffix arrays is reduced to a sort and search paradigm that
employs novel algorithms. The main advantage of suffix arrays over suffix trees is that, in practice, they
use three to five times less space. From a complexity standpoint, suffix arrays permit on-line string
searches of the type, ‘‘Is W a substring of A?’’ to be answered in time O(P + log N), where P is the
length of W and N is the length of A, which is competitive with (and in some cases slightly better than)
suffix trees. The only drawback is that in those instances where the underlying alphabet is finite and small,
suffix trees can be constructed in O(N) time in the worst case, versus O(N log N) time for suffix arrays.
However, we give an augmented algorithm that, regardless of the alphabet size, constructs suffix arrays in
O(N) expected time, albeit with lesser space efficiency. We believe that suffix arrays will prove to be
better in practice than suffix trees for many applications.

1. Introduction

Finding all instances of a string W in a large text A is an important pattern matching problem. There are
many applications in which a fixed text is queried many times. In these cases, it is worthwhile to construct
a data structure to allow fast queries. The Suffix tree is a data structure that admits efficient on-line string
searches. A suffix tree for a text A of length N over an alphabet can be built in O(N log | |) time and
O(N) space [Wei73, McC76]. Suffix trees permit on-line string searches of the type, ‘‘Is W a substring of
A?’’ to be answered in O(P log | |) time, where P is the length of W. We explicitly consider the

1 Supported in part by an NSF Presidential Young Investigator Award (grant DCR-8451397), with matching funds from AT&T, and
by an NSF grant CCR-9002351.
2 Supported in part by the NIH (grant R01 LM04960-01) , and by an NSF grant CCR-9002351.

LINEAR PATTERN MATCHING ALGORITHMS

Peter Weiner

*The Rand Corporation, Santa Monica, California

Abstract

In 1970, Knuth, Pratt, and Morris [1] showed how to do basic pattern matching
in linear time. Related problems, such as those discussed in [4], have pre-
viously been solved by efficient but sub-optimal algorithms. In this paper, we
introduce an interesting data structure called a bi-tree. A linear time algo-
rithm "for obtaining a compacted version of a bi-tree associated with a given
string is presented. With this construction as the basic tool, we indicate how
to solve several pattern matching problems, including some from [4], in linear
time.

I. Introduction

In 1970, Knuth, Morris, and Pratt [1-2] showed how to
match a given pattern into another given string in time
proportional to the sum of the lengths of the pattern
and string. Their algorithm was derived from a result
of Cook [3] that the 2-way deterministic pushdown lan-
guages are recognizable on a random access machine in
time O(n). Since 1970, attention has been given to
several related problems in pattern matching [4-6], but
the algorithms developed in these investigations us-
ually run in time which is slightly worse than linear,
for example O(n log n). It is of considerable interest
to either establish that there exists a non-linear
lower bound on the run time of all algorithms which
solve a given pattern matching problem, or to exhibit
an algorithm whose run time is of O(n).

In the following sections, we introduce an inter-
esting data structure, called a bi-tree, and show how
an efficient calculation of a bi-tree can be applied to
the linear-time (and linear-space) solution of several
pattern matching problems.

II. Strings, Trees, and Bi-Trees

In this paper, both patterns and strings are finite
length, fully specified sequences of symbols over a
finite alphabet [= {al ,a2 , ... ,at }. Such a pattern of
length m will be denoted as

P = P (1) P (2) ... P (m),

where P(i), an element of [, is the i th symbol in the
sequence, and is said to be located in the i th position.
To represent the substring of characters which begins
at position i of P and ends at position j, we write
P (i: j). That is, when i j, P (i: j) = P (i) ... P (j),
and P(i:j) = A, the null string, for i > j.

Let [* denote the set of all finite length strings
over [. strings WI and w2 in [* may be combined by
the operation of concatenation to form a new string
W = WI w2 . The reverse of a string P = A (1) ... A (m)
is the s t r ing pr = A (m) ... A (1).

The length of a string or pattern, denoted by 19(w)
for W E [*, is the number of symbols in the sequence.
For example, 19(P(i:j» = j-i+l if i j and is 0 if
i > j.

Informally, a bi-tree over [can be thought of as
two related t-ary trees sharing a common node set.

*This work was partially supported by grants from
the Alfred P. Sloan Foundation and the Exxon Education
Foundation. P. Weiner was at Yale University when this
work was done.

Before giving a formal definition of a bi-tree, we re-
view basic definitions and terminology concerning t-ary
trees. (See Knuth [7] for further details.)

A t-ary tpee T over [= {al, ... ,at } is a set of
nodes N which is either empty or consists of a poot,
nO E N, and t ordered, disjoint t-arY trees.

Clearly, every node ni E N is the root of some
t-ary tree T i which itself consists of n1 and t ordered,

iiidisjoint t-ary trees, say Tl , T2 , Tt • We call the
iiitree Tj a sub-tpee of T ; also, .all sub-trees of Tj are

considered to be sub-trees of T1 • It is natural to
associate with a tree T a successor function

S: NX[(N-{nO}) U {NIL}

defined for ni E Nand a j E L by

ni , the root of if is non-empty
s(ni'Oj) = {NIL if is empty.

It is easily seen that this function completely deter-
mines a t-ary tree and we write T = (N, nO'S).

If n' = S(n,a), we say that nand n' are connected
by a bpanah from n to n f which has a label of o. wet
call n' a son of n, and n the father of n'. The degree
of a node n is the number of sons of that node, that is,
the number of distinct a for which S(n,a) NIL. A node
of degree 0 is a leaf of the tree.

It is useful to extend the domain of S from Nx[
to (N U {NIL}) x [* (and extend the range to include
nO) by the inductive definition

(Sl) S(NIL,w) NIL for all w E [*
(S2) S(n,A) = n for all n E N
(S3) S(n,u.xJ) = S(S(n,w),a) for all n EN, w E L*,

and a E L:.

Not every S: Nx[(N-{nO}) U {NIL} is the successor
function of a t-ary tree. But a necessary and suffi-
cient condition for S to be a successor function of
some (unique, if it exists) t-ary tree can be expressed
in terms of the extended S. Namely, that there exists
exactly one choice of w such that S(nO'w} n for every
n E N. there exists a T such that T = (N,nO'S),
we say that S is

We may also associate with T a father function
F: N N defined by F(nO) = nO and for n' E N-{nO}'

F (n ') = n ¢) S (n ,a) = n' for s orne a E [.

65

Suffix Arrays: practice

Applications. Bioinformatics, information retrieval, data compression, …

Many ingenious algorithms.

・Memory footprint very important.

・State-of-the art still changing.

year algorithm worst case memory

1990 Manber-Myers N log N 8 N

1999 Larsson-Sadakane N log N 8 N

2003 Kärkkäinen-Sanders N 13 N

2003 Ko-Aluru N 10 N

2008 divsufsort2 N log N 5 N

2010 sais N 6 N

good choices
(Yuta Mori)

String sorting summary

We can develop linear-time sorts.

・Key compares not necessary for string keys.

・Use characters as index in an array.

We can develop sublinear-time sorts.

・Input size is amount of data in keys (not number of keys).

・Not all of the data has to be examined.

3-way string quicksort is asymptotically optimal.

・1.39 N lg N chars for random data.

Long strings are rarely random in practice.

・Goal is often to learn the structure!

・May need specialized algorithms.

66

