

3.2 BINARY SEARCH TREES

- **▶** BSTs
- ordered operations
- deletion

3.2 BINARY SEARCH TREES

▶ BSTs

ordered operations

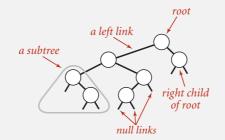
• deletion

Binary search trees

Definition. A BST is a binary tree in symmetric order.

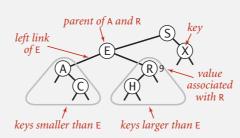
A binary tree is either:

- Empty.
- Two disjoint binary trees (left and right).



Symmetric order. Each node has a key, and every node's key is:

- Larger than all keys in its left subtree.
- Smaller than all keys in its right subtree.



Binary search tree demo

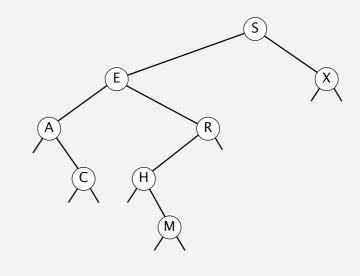
Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

Search. If less, go left; if greater, go right; if equal, search hit.

successful search for H

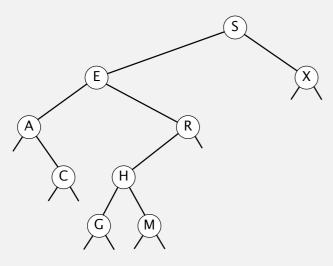


_

Binary search tree demo

Insert. If less, go left; if greater, go right; if null, insert.

insert G



BST implementation (skeleton)

```
public class BST<Key extends Comparable<Key>, Value>
{
   private Node root;

   private class Node
   {        /* see previous slide */ }

   public void put(Key key, Value val)
   {        /* see next slides */ }

   public Value get(Key key)
   {        /* see next slides */ }

   public void delete(Key key)
   {        /* see next slides */ }

   public Iterable<Key> iterator()
   {        /* see next slides */ }

}
```

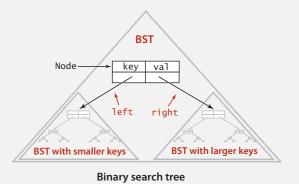
BST representation in Java

Java definition. A BST is a reference to a root Node.

A Node is composed of four fields:

- A Key and a Value.
- · A reference to the left and right subtree.


```
private class Node
{
   private Key key;
   private Value val;
   private Node left, right;
   public Node(Key key, Value val)
   {
      this.key = key;
      this.val = val;
   }
}
```



 $\label{thm:comparable} \mbox{Key and Value are generic types; Key is $Comparable$}$

BST search: Java implementation

Get. Return value corresponding to given key, or null if no such key.

```
public Value get(Key key)
{
   Node x = root;
   while (x != null)
   {
      int cmp = key.compareTo(x.key);
      if (cmp < 0) x = x.left;
      else if (cmp > 0) x = x.right;
      else if (cmp == 0) return x.val;
   }
   return null;
}
```

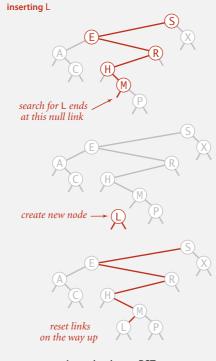
Cost. Number of compares is equal to 1 + depth of node.

BST insert

Put. Associate value with key.

Search for key, then two cases:

- Key in tree ⇒ reset value.
- Key not in tree ⇒ add new node.



Insertion into a BST

9

BST insert: Java implementation

Put. Associate value with key.

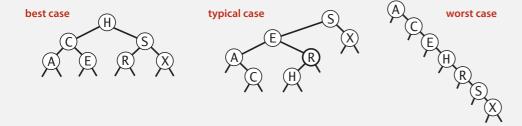
```
public void put(Key key, Value val)
{    root = put(root, key, val); }

private Node put(Node x, Key key, Value val)
{
    if (x == null) return new Node(key, val);
    int cmp = key.compareTo(x.key);
    if (cmp < 0)
        x.left = put(x.left, key, val);
    else if (cmp > 0)
        x.right = put(x.right, key, val);
    else if (cmp == 0)
        x.val = val;
    return x;
}
```

Cost. Number of compares is equal to 1 + depth of node.

Tree shape

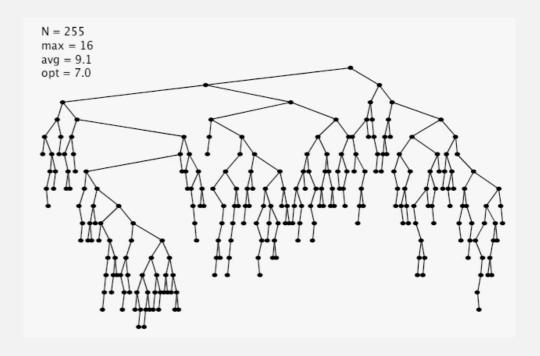
- · Many BSTs correspond to same set of keys.
- Number of compares for search/insert is equal to 1 + depth of node.



Bottom line. Tree shape depends on order of insertion.

BST insertion: random order visualization

Ex. Insert keys in random order.



- 1

Sorting with a binary heap

Q. What is this sorting algorithm?

- O. Shuffle the array of keys.
- 1. Insert all keys into a BST.
- 2. Do an inorder traversal of BST.

A. It's not a sorting algorithm (if there are duplicate keys)!

- Q. OK, so what if there are no duplicate keys?
- Q. What are its properties?

13

BSTs: mathematical analysis

Proposition. If N distinct keys are inserted into a BST in random order, the expected number of compares for a search/insert is $\sim 2 \ln N$. Pf. 1–1 correspondence with quicksort partitioning.

Proposition. [Reed, 2003] If N distinct keys are inserted in random order, expected height of tree is ~ 4.311 ln N.

How Tall is a Tree?

Bruce Reed CNRS, Paris, France reed@moka.ccr.jussieu.fr

ABSTRACT

Let H_n be the height of a random binary search tree on n nodes. We show that there exists constants $\alpha=4.31107\ldots$ and $\beta=1.95\ldots$ such that $E(H_n)=\alpha\log n-\beta\log\log n+O(1)$, We also show that $\operatorname{Var}(H_n)=O(1)$.

But... Worst-case height is N.

[exponentially small chance when keys are inserted in random order]

Correspondence between BSTs and quicksort partitioning

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13

 P
 S
 E
 U
 D
 O
 M
 Y
 T
 H
 I
 C
 A
 L

 P
 S
 E
 U
 D
 O
 M
 Y
 T
 H
 I
 C
 A
 L

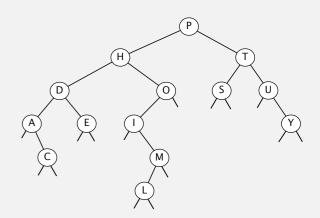
 H
 L
 E
 A
 D
 O
 M
 C
 I
 P
 T
 Y
 U
 S

 A
 C
 D
 E
 H
 O
 M
 L
 I
 P
 T
 Y
 U
 S

 A
 C
 D
 E
 H
 O
 M
 L
 I
 P
 T
 Y
 U
 S

 A
 C
 D
 E
 H
 O
 M
 L
 I
 P
 T
 Y
 U
 S

 A
 C</td



Remark. Correspondence is 1–1 if array has no duplicate keys.

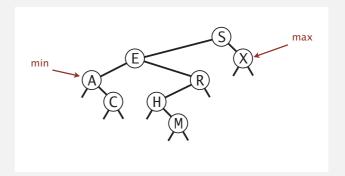
ST implementations: summary

implementation	guarantee		averag	e case	operations			
	search	insert	search hit	insert	on keys			
sequential search (unordered list)	N	N	½ N	N	equals()			
binary search (ordered array)	lg N	N	lg N	½ N	compareTo()			
BST	N	N 1	1.39 lg <i>N</i>	1.39 lg <i>N</i>	compareTo()			

Why not shuffle to ensure a (probabilistic) guarantee of 4.311 ln N?

Minimum and maximum

Minimum. Smallest key in table. Maximum. Largest key in table.

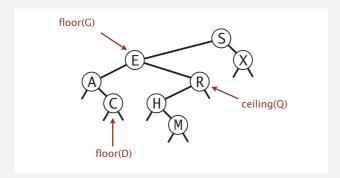


Q. How to find the min / max?

10

Floor and ceiling

Floor. Largest key \leq a given key. Ceiling. Smallest key \geq a given key.



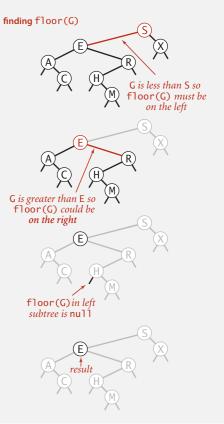
Q. How to find the floor / ceiling?

Computing the floor

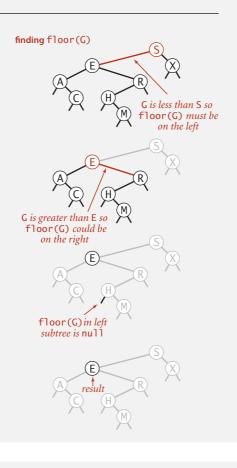
Case 1. [k equals the key in the node] The floor of k is k.

Case 2. [k is less than the key in the node] The floor of k is in the left subtree.

Case 3. [k is greater than the key in the node] The floor of k is in the right subtree (if there is any key $\leq k$ in right subtree); otherwise it is the key in the node.

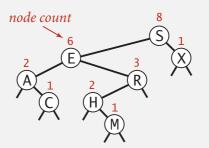


Computing the floor



Rank and select

- Q. How to implement rank() and select() efficiently?
- A. In each node, we store the number of nodes in the subtree rooted at that node; to implement size(), return the count at the root.

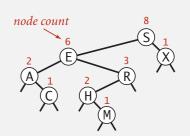


BST implementation: subtree counts

Rank

Rank. How many keys < k?

Easy recursive algorithm (3 cases!)



```
public int rank(Key key)
{  return rank(key, root); }

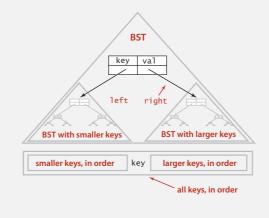
private int rank(Key key, Node x)
{
  if (x == null) return 0;
  int cmp = key.compareTo(x.key);
  if (cmp < 0) return rank(key, x.left);
  else if (cmp > 0) return 1 + size(x.left) + rank(key, x.right);
  else if (cmp == 0) return size(x.left);
}
```

Inorder traversal

- · Traverse left subtree.
- Enqueue key.
- Traverse right subtree.

```
public Iterable<Key> keys()
{
    Queue<Key> q = new Queue<Key>();
    inorder(root, q);
    return q;
}

private void inorder(Node x, Queue<Key> q)
{
    if (x == null) return;
    inorder(x.left, q);
    q.enqueue(x.key);
    inorder(x.right, q);
}
```



Property. Inorder traversal of a BST yields keys in ascending order.

BST: ordered symbol table operations summary

	sequential search	binary search	BST	
search	N	lg N	h	
insert	N	N	h	h = height of BST
min / max	N	1	h	(proportional to log N if keys inserted in random order)
floor / ceiling	N	lg N	h	
rank	N	lg N	h	
select	N	1	h	
ordered iteration	N log N	N	N	

order of growth of running time of ordered symbol table operations

25

ST implementations: summary

implementation	guarantee			average case			ordered	operations
mpiementation	search	insert	delete	search hit	insert	delete	ops?	on keys
sequential search (linked list)	N	N	N	½ N	N	½ N		equals()
binary search (ordered array)	lg N	N	N	lg N	½ N	½ N	V	compareTo()
BST	N	N	N	1.39 lg <i>N</i>	1.39 lg <i>N</i>	???	V	compareTo()

Next. Deletion in BSTs.

3.2 BINARY SEARCH TREES

BSTs

ordered operations

deletion

Algorithms

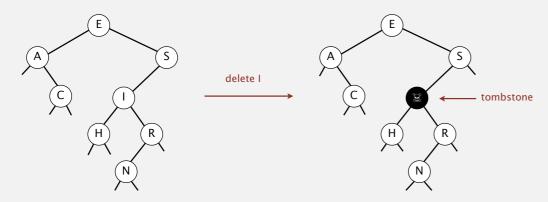
ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

BST deletion: lazy approach

To remove a node with a given key:

- Set its value to null.
- Leave key in tree to guide search (but don't consider it equal in search).



Cost. $\sim 2 \ln N'$ per insert, search, and delete (if keys in random order), where N' is the number of key-value pairs ever inserted in the BST.

Unsatisfactory solution. Tombstone (memory) overload.

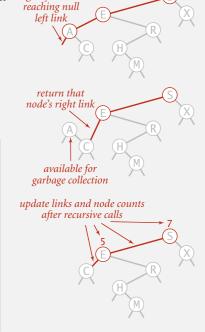
Deleting the minimum

To delete the minimum key:

- Go left until finding a node with a null left link.
- Replace that node by its right link.
- Update subtree counts.

```
public void deleteMin()
{    root = deleteMin(root); }

private Node deleteMin(Node x)
{
    if (x.left == null) return x.right;
    x.left = deleteMin(x.left);
    x.count = 1 + size(x.left) + size(x.right);
    return x;
}
```

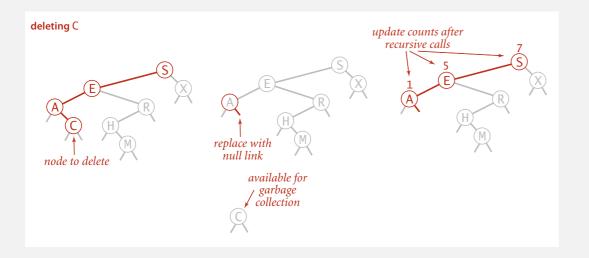


30

Hibbard deletion

To delete a node with key k: search for node t containing key k.

Case 0. [0 children] Delete t by setting parent link to null.

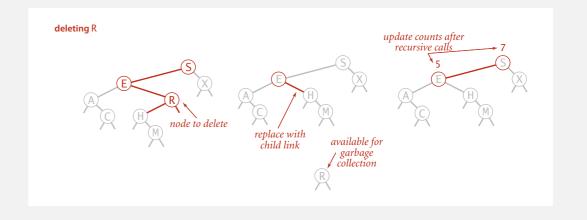


Hibbard deletion

31

To delete a node with key k: search for node t containing key k.

Case 1. [1 child] Delete t by replacing parent link.



-

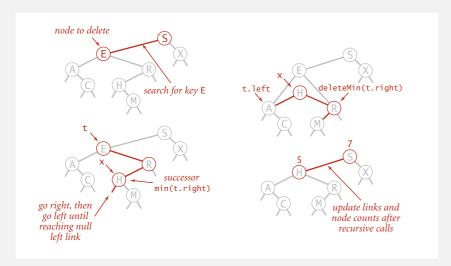
Hibbard deletion

To delete a node with key k: search for node t containing key k.

Case 2. [2 children]

- Find successor x of t.
- Delete the minimum in t's right subtree.
- Put x in t's spot.

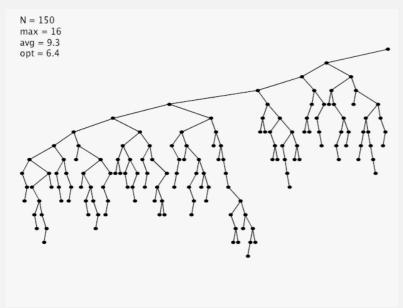
- x has no left child
- but don't garbage collect x
- ← still a BST



33

Hibbard deletion: analysis

Unsatisfactory solution. Not symmetric.



Surprising consequence. Trees not random (!) $\Rightarrow \sqrt{N}$ per op. Longstanding open problem. Simple and efficient delete for BSTs.

Hibbard deletion: Java implementation

```
public void delete(Key key)
{ root = delete(root, key); }
private Node delete(Node x, Key key) {
   if (x == null) return null;
   int cmp = key.compareTo(x.key);
            (cmp < 0) x.left = delete(x.left, key); ___</pre>
                                                               _____ search for key
   else if (cmp > 0) x.right = delete(x.right, key);
   else {
      if (x.right == null) return x.left;
                                                                     no right child
      if (x.left == null) return x.right;
                                                                      no left child
      Node t = x;
                                                                      replace with
      x = min(t.right);
                                                                      successor
      x.right = deleteMin(t.right);
      x.left = t.left;
                                                                    update subtree
   x.count = size(x.left) + size(x.right) + 1; \leftarrow
                                                                       counts
   return x;
```

ST implementations: summary

implementations	guarantee			average case			ordered	operations
	search	insert	delete	search hit	insert	delete	ops?	on keys
sequential search (linked list)	N	N	N	½ N	N	½ N		equals()
binary search (ordered array)	lg N	N	N	lg N	½ N	½ N	V	compareTo()
BST	N	N	N	1.39 lg <i>N</i>	1.39 lg <i>N</i>	\sqrt{N}		compareTo()
	other operations also become √N if deletions allowed							

Next lecture. Guarantee logarithmic performance for all operations.