Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

3.2 BINARY SEARCH TREES

» BSTs

» deletion

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

Binary search trees

» ordered operations

Definition. A BST is a binary tree in symmetric order.

A binary tree is either:
« Empty.

« Two disjoint binary trees (left and right).

Symmetric order. Each node has a key,
and every node’s key is:
« Larger than all keys in its left subtree.

« Smaller than all keys in its right subtree.

root

a left link
a subtree B
% right child
\/ of root
null links

parent of A and R i
left link

of E ™~

0 @ 9 T~ value
@ m associated
with R

keys smaller than € keys larger than E

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

Binary search tree demo

3.2 BINARY SEARCH TREES

» BSTs

Search. If less, go left; if greater, go right; if equal, search hit.

successful search for H

Binary search tree demo

Insert. If less, go left; if greater, go right; if null, insert.

insert G

BST implementation (skeleton)

BST representation

in Java

public class BST<Key extends Comparable<Key>, Value>

{

private Node root;

private class Node

{ /* see previous slide */ }

public void put(Key key, Value val)
{ /* see next slides */ }

public Value get(Key key)
{ /* see next slides */ }

public void delete(Key key)
{ /* see next slides */ 1}

public Iterable<Key> iterator()
{ /* see next slides */ }

root of BST

Java definition. A BST is a reference to a root Node.

A Node is composed of four fields:

e A Key and a Value.

» A reference to the left and right subtree.

/ \

smaller keys larger keys

private class Node
{
private Key key;

private Value val;
private Node left, right;
public Node(Key key, Value val)

{

this.key
this.val

key;
val;

Key and Value are generic types; Key is Comparable

BST search: Java implementation

BST

| key [val |

Teft right

BST with smaller keys

Binary search tree

Get. Return value corresponding to given key, or nul11 if no such key.

public Value get(Key key)

{

Node x = root;
while (x != null)

{

}

int cmp = key.compareTo(x.key);

if (cmp < 0) x = x.left;
else if (cmp > 0) x = x.right;
else return x.val;

return null;

Cost. Number of compares is equal to 1 + depth of node.

BST with larger keys

BST insert

Put. Associate value with key. inserting L

Search for key, then two cases:

« Key in tree = reset value. search for L ends

. 1t this null link
« Key not in tree = add new node. ‘

create new node —» @
\
/7

reset links
on the way up

Insertion into a BST

Tree shape

» Many BSTs correspond to same set of keys.
« Number of compares for search/insert is equal to 1 + depth of node.

typical case worst case

best case
(H)
() (S)
(A (B) (R) (X

Bottom line. Tree shape depends on order of insertion.

BST insert: Java implementation

Put. Associate value with key.

public void put(Key key, Value val)

{

concise, but tricky,

recursive code;

|
root = put(root, key, val); 1} read carefully!

private Node put(Node x, Key key, Value val)

{

if (x == null) return new Node(key, val);
int cmp = key.compareTo(x.key);
if (cmp < 0)

x.left = put(x.left, key, val);
else if (cmp > 0)

x.right = put(x.right, key, val);
else

x.val = val;
return x;

Cost. Number of compares is equal to 1 + depth of node.

BST insertion: random order visualization

Ex. Insert keys in random order.

N = 255

max = 16
avg = 9.1
opt=7.0

p—

Sorting with a binary heap Correspondence between BSTs and quicksort partitioning

Q. What is this sorting algorithm?

01 2 3 4 5 6 7 8 9 1011 12 13
P S EUDOMYTH I CAL
0. Shuffle the array of keys. PSEUDOMYTH I CAL
1. Insert all keys into a BST. b EADOM T YU
D CEAHOML I
2. Do an 1inorder traversal of BST. A CDE
A C
C
E
A. It's not a sorting algorithm (if there are duplicate keys)! I MLo
I M L
L M
L
. . S T U Y
Q. OK, so what if there are no duplicate keys? .
Q. What are its properties? Uy
Y
A CDEH I LMOUZPSTUY

Remark. Correspondence is 1-1 if array has no duplicate keys.

BSTs: mathematical analysis ST implementations: summary

Proposition. If Ndistinct keys are inserted into a BST in random order,

the expected number of compares for a search/insert is ~2 In N.

Pf. 1-1 correspondence with quicksort partitioning. average case I —

implementation
p on keys
search insert search hit insert

sequential search

Proposition. [Reed, 2003] If Ndistinct keys are inserted in random order, (unordered list) N N 15 N N equals()
expected height of tree is ~4.311 In M.
. binary search
2
How Tall is a Tree? o p— Ilg N N lg N 5 N compareTo()
Bruce Reed
CNRS, Paris, France BST N N 1391g N 1391g N compareTo()

reed@moka.ccr.jussieu.fr

ABSTRACT

Let Hy be the height of a random binary search tree on n
nodes. We show that there exists constants o = 4.31107...
and 8 = 1.95... such that B(H,) = alogn — Bloglogn +
O(1), We also show that Var(H,) = O(1). e
Why not shuffle to ensure a (probabilistic) guarantee of 4.311 In N?

But... Worst-case height is N.
[exponentially small chance when keys are inserted in random order]

3.2 BINARY SEARCH TREES

» ordered operations

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

Floor and ceiling

Floor. Largest key < a given key.
Ceiling. Smallest key > a given key.

floor(G)

ceiling(Q)

floor(D)

Q. How to find the floor / ceiling?

Minimum and maximum

Minimum. Smallest key in table.
Maximum. Largest key in table.

Q. How to find the min / max?

Computing the floor

Case 1. [k equals the key in the node]

The floor of & is k.

Case 2. [kis less than the key in the node]
The floor of k is in the left subtree.

Case 3. [kis greater than the key in the node]
The floor of k is in the right subtree

(if there is any key < k in right subtree);
otherwise it is the key in the node.

finding f1oor (G)

G is less than S so
m floor (G) must be
on the left

G is greater than E so
floor (G) could be
on the right

®

/

floor (G)in left
subtree is null

®

result

20

Computing the floor

public Key floor(Key key)

{
Node x = floor(root, key);
if (x == null) return null;
return x.key;

h;

private Node floor(Node x, Key key)
{

if (x == null) return null;

int cmp = key.compareTo(x.key);

if (cmp == 0) return x;

if (cmp < 0) return floor(x.left, key);
Node t = floor(x.right, key);

if (t != null) return t;
else return x;

BST implementation: subtree counts

finding f1oor (G)

G is less than S so
m floor (G) must be
on the left

G is greater than E so
floor (G) could be
on the right

®

/
v
floor(G)in left
subtree isnull

®

4
result

21

private class Node

{ {
private Key key;
private Value val;
private Node left; {
private Node right;
private int count;

} \ 3

number of nodes in subtree

private Node put(Node x, Key key, Value val)

{

pubTlic int size()
return size(root); 1}

private int size(Node x)

if (x == null) return 0;
return x.count?\\\\ ok to call

when x is null

initialize subtree

/ count to 1

if (x == null) return new Node(key, val, 1);

int cmp = key.compareTo(x.key);

if (cmp < 0) x.left = put(x.left, key, val);
else if (cmp > 0) x.right = put(x.right, key, val);

else x.val = val;

x.count = 1 + size(x.left) + size(x.right);

return x;

28]

Rank and select

Q. How to implement rank() and select() efficiently?

A. In each node, we store the number of nodes in the subtree rooted at

that node; to implement size(), return the count at the root.

node count

Rank

22

Rank. How many keys < k?
node count

Easy recursive algorithm (3 cases!)

public int rank(Key key)
{ return rank(key, root); }

private int rank(Key key, Node x)

{
if (x == null) return 0;
int cmp = key.compareTo(x.key);
if (cmp < 0) return rank(key, x.left);
else if (cmp > 0) return 1 + size(x.left) + rank(key, x.right);
else return size(x.left);
}

24

Inorder traversal

« Traverse left subtree.
« Enqueue key.
« Traverse right subtree.

pubTlic Iterable<Key> keys()

{ BST
Queue<Key> q = new Queue<Key>(Q);

inorder(root :
{eediEy e P
return q;

} Teft right

private void inorder(Node x, Queue<Key> q)

{ BST with smaller keys BST with larger keys
-! f (X == nU1 1) return; smaller keys, in order key larger keys, in order
inorder(x.left, q);

Cl-eanEUECX.key) H \allkeys, in order
inorder(x.right, q);

Property. Inorder traversal of a BST yields keys in ascending order.

25

3.2 BINARY SEARCH TREES

» deletion

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

BST: ordered symbol table operations summary

search N IlgN
insert N N

min / max N 1

floor / ceiling N IlgN
N IgN
select N 1
ordered iteration Nlog N N

il :
sequentia binary BST
search search

h

h = height of BST
(proportional to log N
if keys inserted in random order)

N

order of growth of running time of ordered symbol table operations

ST implementations: summary

26

guarantee
implementation

sequential search

1
(linked list) N N N AN
binary search . . = i
(ordered array) g g
BST N N N 1.391gN

Next. Deletion in BSTs.

ops?

average case

ordered operations

on keys

N BN equals()
BN BN v compareTo()
1391gN v compareTo()

28

BST deletion: lazy approach

To remove a node with a given key:
 Set its value to null.

« Leave key in tree to guide search (but don't consider it equal in search).

delete |

Cost. ~2In N’ per insert, search, and delete (if keys in random order),
where N'is the number of key-value pairs ever inserted in the BST.

Unsatisfactory solution. Tombstone (memory) overload.

Hibbard deletion

To delete a node with key k: search for node t containing key k.

Case 0. [0 children] Delete t by setting parent link to null.

deleting C

®

replace with
null link

node to delete

available for
garbage
/ collection

update counts after
recursive calls

29

31

Deleting the minimum

To delete the minimum key:

« Go left until finding a node with a null left link. goleft until

» Replace that node by its right
« Update subtree counts.

public void deleteMin()
{ root = deleteMin(root); 1}

private Node deleteMin(Node x)
{

if (x.left == null) return x.
x.left = deleteMin(x.left);

reaching null

link. left link

N\

return that
node’s right link

available for
garbage collection

update links and node counts
after recursive calls

—7
right; \2%;:)>//’(>

x.count = 1 + size(x.left) + size(x.right);

return Xx;

Hibbard deletion

To delete a node with key k: search for node t containing key k.

Case 1. [I child] Delete t by replacing parent link.

deleting R

(S
R

node to delete

G,

update counts after

recm‘sivcrmlls//v 7
(SD/O

replace with

child link available for

garbage
/collecrion

30

22

Hibbard deletion Hibbard deletion: Java implementation

To delete a node with key k: search for node t containing key k.
public void delete(Key key)

{ root = delete(root, key); 1}
Case 2. [2 children]

« Find successor x of t. <«—— x has no left child private Node delete(Node x, Key key) {
L . . , if (x == null) return null;
» Delete the minimum in t’s right subtree. <—— butdon't garbage collect x int cmp = key.compareTo(x.key);
« Put x in t's spot. <«—— stillaBST if (cmp < 0) x.left = delete(x.left, key); search for key
else if (cmp > 0) x.right = delete(x.right, key);
node to delete else {
N if (x.right == null) return x.left; < no right child
if (x.Teft == null) return x.right; < no left child
X
search for key E t.1§ft /\O%;Min(t.right) Node t = x;
x = min(t.right); < replace with
'\ x.right = deleteMin(t.right); successor

7

: x.left = t.left;
X
N O/\O }

~ successor

. . . update subtree
min(t.right) x.count = size(x.left) + size(x.right) + 1; .

A

counts
go right, then / update links and return Xx;
go left until node counts after 1
reaching null recursive calls
left link
33
Hibbard deletion: analysis ST implementations: summary

Unsatisfactory solution. Not symmetric.

N =150 guarantee average case .
max = 16 . : ordered operations
implementation

avg = 9.3
opt=6.4

) : : ops? on keys
search | insert | delete | search hit insert delete

sequential search

1 1
(linked list N N N iz N b N equals()
binary search IgN N N IgN B N B N v compareTo()
(ordered array) g g P
BST N N N 1391gN 1391gN @ v compareTo()

other operations also become /N
if deletions allowed

Surprising consequence. Trees not random () = N per op.

Longstanding open problem. Simple and efficient delete for BSTs. Next lecture. Guarantee logarithmic performance for all operations.

35

