A 1 g() I 1 [h Ims ROBERT SEDGEWICK | KEVIN WAYNE

2.4 PRIORITY QUEUES

» APl and elementary implementations
» binary heaps
» heapsort

» event-driven simulation

RoOBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu

2.4 PRIORITY QUEUES

» APl and elementary implementations

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu

Collections

A collection is a data type that stores a group of items.

stack PUSH, Pop linked list, resizing array
queue ENQUEUE, DEQUEUE linked list, resizing array
priority queue INSERT, DELETE-MAX binary heap
symbol table PuT, GET, DELETE binary search tree, hash table
set ADD, CONTAINS, DELETE binary search tree, hash table

“ Show me your code and conceal your data structures, and I shall
continue to be mystified. Show me your data structures, and I won't

usually need your code, it'll be obvious.” — Fred Brooks

Priority queue

Collections. Insert and delete items. Which item to delete?

Stack. Remove the item most recently added.
Queue. Remove the item least recently added.
Randomized queue. Remove a random item.

Priority queue. Remove the largest (or smallest) item.

return

Generalizes: stack, queue, randomized queue.

operation argument

value
insert P
insert Q
insert E
remove max Q
insert X
insert A
insert M
remove max X
insert P
insert L
insert E

reriove max P

Priority queue API

Requirement. Items are generic; they must also be ComparabTe.

Key must be Comparable

/ (bounded type parameter)

public class MaxPQ<Key extends Comparable<Key>>

MaxPQQ() create an empty priority queue
void 1insert(Key v) insert a key into the priority queue
Key delMax() return and remove a largest key
boolean 1isEmpty() is the priority queue empty?

Note. Duplicate keys allowed; delMax() picks any maximum key.

Priority queue: applications

« Event-driven simulation.
« Numerical computation.
o Discrete optimization.

« Artificial intelligence.

« Computer networks.

o Operating systems.

« Data compression.

« Graph searching.

« Number theory.

« Spam filtering.
 Statistics.

' customers in a line, colliding particles]
' reducing roundoff error]

 bin packing, scheduling]

. A* search]

' web cache |

' load balancing, interrupt handling]

. Huffman codes]

' Dijkstra's algorithm, Prim's algorithm]
. sum of powers]

| Bayesian spam filter]

 online median in data stream]

ann
non
ST

Priority queue: client example

Challenge. Find the largest m items in a stream of » items.
« Fraud detection: isolate $$ transactions. \
« NSA monitoring: flag most suspicious documents. n huge, m large

Constraint. Not enough memory to store n items.

Transaction data
type is Comparable

/ (ordered by $9)

MinPQ<Transaction> pq = new MinPQ<Transaction>();

////)@hi1e (StdIn.hasNextLine())

use a min-oriented pq {

String line = StdIn.readLine();

Transaction transaction = new Transaction(line);
pg.insert(transaction);

1t (pg.size() > m)

. i pg how contains
Pg.delMin(); ¢ largest m items

Priority queue: client example

Challenge. Find the largest m items in a stream of n items.

sort nlogn n
elementary PQ mn m
binary heap nlogm m

order of growth of finding the largest m in a stream of n items

Priority queue: unordered and ordered array implementation

: return . contents contents
operation argument ;1. S1z€ (unordered) (ordered)
insert P 1 P P
insert Q ? P Q P Q
insert E 3 P Q E E P Q
remove max Q 2 P E E P
insert X 3 P E X E P X
insert A 4 P E X A A E P X
insert M 5 P E X A M A E M P X
rermove max X 4 P E M A A E M P
insert P 5 P E M A P A E M P P
insert L 6 P E M A P L A E L M P P
insert E / P E M A P L E A E E L M P
rermove max P 6 E M A P L E A E E L M P

A sequence of operations on a priority queue

Priority queue: implementations cost summary

Challenge. Implement all operations efficiently.

implementation insert del max -

unordered array

ordered array n 1 1

order of growth of running time for priority queue with n items

Solution. Partially-ordered array.

10

2.4 PRIORITY QUEUES

» binary heaps
Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu

Complete binary tree

Binary tree. Empty or node with links to left and right binary trees.

Complete tree. Perfectly balanced, except for bottom level.

complete binary tree with n = 16 nodes (height = 4)

Property. Height of complete binary tree with n nodes is |Ig n|.
Pf. Height increases only when » is a power of 2.

12

A complete binary tree in nature

13

Binary heap: representation

Binary heap. Array representation of a heap-ordered complete binary tree.

Heap-ordered binary tree.
« Keys in nodes.
o Parent's key no smaller than
children’s keys. |
afi]
Array representation.
e Indices start at 1.
e Take nodes in level order.
« No explicit links needed! \\
(T

I H G

Heap representations

14

Binary heap: properties

Proposition. Largest key is a[1], which is root of binary tree.
Proposition. Can use array indices to move through tree.
« Parent of node at k is at k/2.

e Children of node at k are at 2k and 2k+1.

ali]

I H G

Heap representations

15

Binary heap demo

Insert. Add node at end, then swim it up.
Remove the maximum. Exchange root with node at end, then sink it down.

heap ordered

16

Binary heap demo

Insert. Add node at end, then swim it up.
Remove the maximum. Exchange root with node at end, then sink it down.

heap ordered

17

Binary heap: promotion

Scenario. A key becomes larger than its parent's key.

To eliminate the violation:
« Exchange key in child with key in parent.
« Repeat until heap order restored.

private void swim(int k)

{
while (k > 1 & & less(k/2, k))
{
exch(k, k/2);
k = k/2;
} (&)

parent of node at k is at k/2
}

Peter principle. Node promoted to level of incompetence.

violates heap order

@ (larger key than parent)

18

Binary heap: insertion

Insert. Add node at end, then swim it up.
Cost. At most 1 +1gn compares.

public void insert(Key x)
{

pa[++n] = X;

swim(n);

insert

- add key to heap

violates heap order

19

Binary heap: demotion

Scenario. A key becomes smaller than one (or both) of its children's.
o _ _ why not smaller child?
To eliminate the violation: g
« Exchange key in parent with key in larger child.
« Repeat until heap order restored.

private void sink(int k) ol A, S O
{ | 2
hile ok <= m I o F
| 5RO
int § = 2%k; S/ ® (D
1f (J < n && less(j, j+1)) J++; M)
1f (!less(k, j)) break; 2 R
exch(k, 7);
o ri JOJORO
== y 10
} e ©
} Top-down reheapify (sink)

Power struggle. Better subordinate promoted.

20

Binary heap:

delete the maximum

Delete max. Exchange root with node at end, then sink it down.

Cost. At most 2 1gn compares.

public Key delMax()

{
Key max = pqll];
exch(l, n--);
sink(1);
pg[n+1] = null; «—— prevent loitering
return max;
¥

remove the maximum

(S) (R)
(N] (P)
® O © @V

violates

heap order
@ W

(S)
(N] (P)
® © © 1"

sink down

21

Binary heap: Java implementation

public class MaxPQ<Key extends Comparable<Key>>

{
private Key[] pqg;
private int n;

public MaxPQ(int capacity) - f::xed .Caplz;.lc.ity
{ pg = (Key[]) new Comparable[capacity+1]; } (for simplicity)

public boolean isEmpty() «——L PQops

{ return n = 0; }

public void insert(Key key) // see previous code

public Key delMax() // see previous code

private void swim(int k) // see previous code «—=F heap helper functions
private void sink(int k) // see previous code

private boolean less(int i, 1int j)

{ return pq[i].compareTo(pql[j]l) < O0; }
private void exch(int i, 1int j)

{ Key t = pqlil; pqlil = pqljl; pqlj]l = t; }

<«——+— array helper functions

Priority queue: implementations cost summary

implementation insert del max -

unordered array

ordered array n 1 1

order-of-growth of running time for priority queue with n items

23

DELETE-RANDOM FROM A BINARY HEAP

Goal. Delete a random key from a binary heap in logarithmic time.

24

DELETE-RANDOM FROM A BINARY HEAP

Goal. Delete a random key from a binary heap in logarithmic time.

Solution.
e Pick a random index r between 1 and n.
o Perform exch(r, n--).
e Perform either sink(r) or swim(r).

25

DELETE-RANDOM FROM A BINARY HEAP

Goal. Delete a random key from a binary heap in logarithmic time.

Solution.
e Pick a random index r between 1 and n.
o Perform exch(r, n--).
e Perform either sink(r) or swim(r).

26

Binary heap: practical improvements

Do "half-exchanges” in sink and swim.
« Reduces number of array accesses.
« Worth doing.

‘ T
() () ()

X

27

Binary heap: practical improvements

Floyd's "bounce” heuristic.
o Sink key at root all the way to bottom. <«— only 1 compare per node
e SWim key back Up. <«— some extra compares and exchanges

« Overall, fewer compares; more exchanges.

° Y

() () (N 0

()) () () L
QOO0 0O00 OO0 G

R. W. Floyd
1978 Turing award

28

Binary heap: practical improvements

Multiway heaps.
e Complete d-way tree.
o Parent's key no smaller than its children's keys.

Fact. Height of complete d-way tree on n nodes is ~log, n.

>

(1) (P (W) ()
HHOROOLWOOMm OMO

3-way heap

29

Priority queues: quiz 1

How many compares (in the worst case) to insert in a d-way heap?

A. ~logan
B. ~logun
C. ~dlogxn
D. ~dlogsn

E. [don't know.

Priority queues: quiz 2

How many compares (in the worst case) to delete-max in a d-way heap?

A. ~logan
B. ~logun
C. ~dlogxn
D. ~dlogsn

E. [don't know.

Priority queue: implementation cost summary

implementation insert del max -

unordered array

ordered array n
binary heap log n
d-ary heap loga n

1
1
1

log n

dlogan

logn™

log n

1+ amortized

order-of-growth of running time for priority queue with n items

<«—— sweet spot: d=4

<«—— why impossible?

Binary heap: considerations

Underflow and overflow.
« Underflow: throw exception if deleting from empty PQ.
« Overflow: add no-arg constructor and use resizing array.

\ leads to log n

.. : .. amortized time per op
M|n|mum'0r|ented pr|0r|ty queue- (hOW to make worst Case?)

o Replace 1ess() with greater().
o Implement greater().

Other operations.
« Remove an arbitrary item. can implement efficiently with sink() and swim()

« Change the priority of an item. [stay tuned for Prim/Dijkstra]

Immutability of keys.
« Assumption: client does not change keys while they're on the PQ.
o Best practice: use immutable keys.

33

Immutability: implementing in Java

Data type. Set of values and operations on those values.

Immutable data type. Can't change the data type value once created.

public class Vector {
private final int n;
private final double[] data;

public Vector(double[] data) {
this.n = data.length;
this.data = new double[n];
for (Ant 1 =0; 1 < n; 1++)
this.data[1] = datal[i];

instance methods don't
change instance variables

<

instance variables private and final
(neither necessary nor sufficient,
but good programming practice)

defensive copy of mutable
instance variables

Immutable. String, Integer, Double, Color, Vector, Transaction, Point2D.

Mutable. StringBuilder, Stack, Counter, Java array.

34

Immutability: properties

Data type. Set of values and operations on those values.
Immutable data type. Can't change the data type value once created.

Advantages.
« Simplifies debugging.
« Simplifies concurrent programming.

« More secure in presence of hostile code.
« Safe to use as key in priority queue or symbol table.

Disadvantage. Must create new object for each data type value.

“ Classes should be immutable unless there's a very good reason

Second Edition

to make them mutable.... If a class cannot be made immutable,

you should still limit its mutability as much as possible. ”

— Joshua Bloch (Java architect)

35

2.4 PRIORITY QUEUES

» heapsort

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu

Priority queues: quiz 3

What is the name of this sorting algorithm?

m o N w P

public void sort(String[] a)

{
int n = a.length;
MaxPQ<String> pq = new MaxPQ<String>();
for (int i = 0; 1 < n; 1++)
pg.insert(ali]);
for (int i = n-1; i >= 0; i--)
al1] = pqg.delMax();
}

Insertion sort.
Mergesort.
Quicksort.

None of the above.

I don't know.

37

Priority queues: quiz 4

What are its properties?

m o N w P

public void sort(String[] a)

{
int n = a.length;
MaxPQ<String> pq = new MaxPQ<String>();
for (int i = 0; 1 < n; 1++)
pg.insert(ali]);
for (int i = n-1; i >= 0; i--)
al1] = pqg.delMax();
}

nlog n compares in the worst case.

In-place.

Stable.
All of the above.

I don't know.

38

Heapsort

Basic plan for in-place sort.
« View input array as a complete binary tree.
« Heap construction: build a max-heap with all n keys.
« Sortdown: repeatedly remove the maximum key.

keys in arbitrary order build max heap sorted result
(in place) (in place)
LA
°E S E
4 7/
L M %0 P

S O R T E X A M P L E X T S P L R A M O E E A E E L M O P R S T X

39

Heapsort demo

Heap construction. Build max heap using bottom-up method.

AN

we assume array entries are indexed 1 to n

array in arbitrary order

40

Heapsort demo

Sortdown. Repeatedly delete the largest remaining item.

array in sorted order

11

41

Heapsort: heap construction

First pass. Build heap using bottom-up method.

for (int k = n/2; k >= 1; k--)
sink(a, k, n);:

sink(3, 11)
(X)
R) &

starting point (arbitrary order) sink(2, 11)
sink(5, 11) (T)

(P} (L)

@p\C@ U

ke 1D sink(1, 11)

©
® ®

result (heap-ordered)

Heapsort: sortdown

Second pass.

xanc,)
sin ,
of %@o

eXCh(l’ 2 @)/q_)\@)
sink (1, 4)
(S

&® & w

« Remove the maximum, one at a time.

« Leave in array, instead of nulling out.

exch(1l, 11)
sink(1, 10)

while (n > 1)

h @ B @ x
exch(a, 1: n"); esxicnhk((ll’, 190)) §§-‘ﬁﬂ&: g% (E)
sink(a, 1, n); ; &) ©)
ShteHls Skt 2 ®©

h(l, 8 h(l, 2
SXeRCL, 7 ® et 13 @
(0) (E) g
(W) L ® ®

R

h(1l, 7 1
Sk 8 © A
(M) E ’E
(A} (L) P ‘L M S0 7P

SR 9S 1O_I_ llX

result (sorted)

Heapsort: Java implementation

public class Heap

{
public static void sort(Comparable[] a)
{
int n = a.length;
for (int k = n/2; k >= 1; k--)
sink(a, k, n);
while (n > 1)
{
exch(a, 1, n);
sink(a, 1, --n);
}
}
but make static (and pass arguments)
private static Avo1d sink(Comparable[] a, int k, int n)
{ /* as before */ }
private static boolean less(Comparable[] a, int 1, int j)
{ /* as before */ }
private static voich exch(Object[] a, int 1, int j)
{ /* as before */
} but convert from 1-based

indexing to 0-base indexing

44

Heapsort: trace

N k
initial values
11 5
11 4
11 3
11 2
11 1
heap-ordered
10 1
9 1
8 1
/ 1
6 1
5 1
4 1
3 1
2 1
1 1

sorted result

ali]

O 1 2 3 4 5 6 7 8 91011

S 0O R T E X A M P L E
L E E
T M P

X R A
T P L M O

X T S R A

X T S P L R A MO E E

T P S O L M E X

S P R E A T

R P E E A VS

P O E M L R

O M E A L P

M L E A E O

L E E A M

E A E L

E A E

A E

AAE E L M O P R S T X

Heapsort trace (array contents just after each sink)

45

Heapsort: mathematical analysis

Proposition. Heap construction makes <n exchanges and <2 n compares.

Pf sketch. [assume n = 2+ — 1]

max number of exchanges
to sink node

0 0 0 0 0 0 0 0
O O O O O O O C

binary heap of height h = 3 a tricky sum

(see COS 340)

d

9
N—(h—1)
N

=

h+2h—1)4+4(h—2)+8(h—3)+...+2"0)

VAN

46

Heapsort: mathematical analysis

Proposition. Heap construction uses <2 n compares and <n exchanges.
Proposition. Heapsort uses <2 nlgn compares and exchanges.

N

algorithm can be improvedto~ 1 nlgn
(but no such variant is known to be practical)

Significance. In-place sorting algorithm with n log n worst-case.
o Mergesort: NO, linear extra Space. <«— in-place merge possible, not practical
e Quicksort: no, quadratic time in worst case. «— nlog n worst-case quicksort possible,

« Heapsort: yes! s (et

Bottom line. Heapsort is optimal for both time and space, but:
« Inner loop longer than quicksort’s.
« Makes poor use of cache.
« Not stable. N\

can be improved using
advanced caching tricks

47

Introsort

Goal. As fast as quicksort in practice; nlog n worst case, in place.

Introsort.
« Run quicksort.
o Cutoff to heapsort if stack depth exceeds 2 1g n.
e Cutoff to insertion sort for n = 16.

Introspective Sorting and Selection Algorithms

David R. Musser*
Computer Science Department
Rensselaer Polytechnic Institute, Troy, NY 12180
musser@cs.rpi.edu

Abstract

THE I I
Quicksort is the preferred in-place sorting algorithm in many contexts, since its average

S I AN DARD computing time on uniformly distributed inputs is ©(N log N) and it is in fact faster than
most other sorting algorithms on most inputs. Its drawback is that its worst-case time

bound is ©(N?). Previous attempts to protect against the worst case by improving the

TE MPLATE way quicksort chooses pivot elements for partitioning have increased the average computing

time too much one might as well use heapsort, which has a ©(Nlog N) worst-case time
LI BRARY bound but is on the average 2 to 5 times slower than quicksort. A similar dilemma exists
with selection algorithms (for finding the i-th largest element) based on partitioning. This
paper describes a simple solution to this dilemma: limit the depth of partitioning, and for
subproblems that exceed the limit switch to another algorithm with a better worst-case
FJ. PLAUGER bound. Using heapsort as the “stopper” yields a sorting algorithm that is just as fast
ALEXANDER A. STEPANOV as quicksort in the average case but also has an ©(N log N) worst case time bound. For
MENG LEE selection, a hybrid of Hoare’s FIND algorithm, which is linear on average but quadratic
in the worst case, and the Blum-Floyd-Pratt-Rivest-Tarjan algorithm is as fast as Hoare’s
algorithm in practice, yet has a linear worst-case time bound. Also discussed are issues
of implementing the new algorithms as generic algorithms and accurately measuring their
performance in the framework of the C++ Standard Template Library.

DAVID R. MUSSER

In the wild. C++ STL, Microsoft .NET Framework.

48

Sorting algorithms: summary

selection

insertion

shell

merge

timsort

quick

3-way quick

heap

v

v v
v
v
v
v
v
v
v v

best average worst remarks

hn?

lhn?

nlogs n

Yonlgn

nlgn

3n

hn?

in?

nlgn

nlgn

2ninn

2nlnn

2nlgn

nlgn

hn?

c n3?

nlgn

nlgn

Ihn?

hn?

2nlgn

nlgn

n exchanges

use for small n
or partially ordered

tight code;
subquadratic

n log n guarantee;
stable

improves mergesort
when preexisting order

n log n probabilistic guarantee;
fastest in practice

improves quicksort
when duplicate keys

n log n guarantee;
in-place

holy sorting grail

49

2.4 PRIORITY QUEUES

Algorithms

» event-driven simulation

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu

Molecular dynamics simulation of hard discs

Goal. Simulate the motion of » moving particles that behave

according to the laws of elastic collision.

Molecular dynamics simulation of hard discs

Goal. Simulate the motion of » moving particles that behave
according to the laws of elastic collision.

Hard disc model.
« Moving particles interact via elastic collisions with each other and walls.

« Each particle is a disc with known position, velocity, mass, and radius.

« No other forces.

temperature, pressure, motion of individual
diffusion constant atoms and molecules

Significance. Relates macroscopic observables to microscopic dynamics.
« Maxwell-Boltzmann: distribution of speeds as a function of temperature.

« Einstein: explain Brownian motion of pollen grains.

52

Warmup: bouncing balls

Time-driven simulation. n bouncing balls in the unit square.

public class BouncingBalls

{

public static void main(String[] args)

{

int n = Integer.parselnt(args[0]);

Ball[] balls = new Ball[n];
for (int i = 0; 1 < n; 1++)
balls[1] = new Ball();

while(true)

{
StdDraw.clear();

for (int 1 = 0; 1 < n; i++)

% java BouncingBalls 100

° o ® e
°
®
® o 2%
o © o. ¢ .
.
e o o o © ° °
° ° g
° . oo o
° °o°® ® °
..‘. * .
®
® ® : ° *
° °
® ® %
L .
o ®
“ o

{
balls[1].move(0.5);
balls[i].draw();
}
StdDraw.show(50) ; I
}

main simulation loop

53

Warmup: bouncing balls

public class Ball

-VX;
—-VY,

{
private double rx, ry; // position
private double vx, vy; // velocity
private final double radius; // radius
public Ball(...)
{ /* initialize position and velocity */ } check for collision with walls
public void move(double dt) /
{
1T ((rx + vx*dt < radius) || (rx + vx*dt > 1.0 - radius)) { vx
it ((ry + vy*dt < radius) || (ry + vy*dt > 1.0 - radius)) { vy
rx = rx + vx*dt;
ry = ry + vy*dt;
}
public void draw()
{ StdDraw.filledCircle(rx, ry, radius); }
}

¥
¥

Missing. Check for balls colliding with each other.
« Physics problems: when? what effect?
o CS problems: which object does the check? too many checks?

54

Time-driven simulation

* Discretize time in quanta of size d:.
 Update the position of each particle after every dr units of time,

and check for overlaps.
« If overlap, roll back the clock to the time of the collision, update the

velocities of the colliding particles, and continue the simulation.

t t + dt t+ 2 dt t + At
(collision detected) (roll back clock)

55

Time-driven simulation

Main drawbacks.
e ~n2/2 overlap checks per time quantum.
* Simulation is too slow if dz is very small.
« May miss collisions if dr is too large.
(if colliding particles fail to overlap when we are looking)

dt too small: excessive computation dt too large: may miss collisions

Y _ 2

56

Event-driven simulation

Change state only when something interesting happens.
« Between collisions, particles move in straight-line trajectories.
« Focus only on times when collisions occur.
« Maintain PQ of collision events, prioritized by time.
o Delete min = get next collision.

Collision prediction. Given position, velocity, and radius of a particle,
when will it collide next with a wall or another particle?

Collision resolution. If collision occurs, update colliding particle(s)
according to laws of elastic collisions.

prediction (at time t)

particles hit unless one passes \
V'

intersection point before the other -
arrives

~

~N

resolution (at time t + dt)
velocities of both particles
change after collision

57

Particle-wall collision

Collision prediction and resolution.
* Particle of radius s at position (rx, ry).
« Particle moving in unit box with velocity (vx, vy).
« Will it collide with a vertical wall? If so, when?

resolution (at time t + dt)
velocity after collision = (= vy, v,)

position after collision = (1-s,1,+v,dt)

prediction (at time t) \l

dt = time to hit wall _ -
= distance/velocity (re>1y) _ -

=(1-s—r1,)lv, .//Tvy/

Predicting and resolving a particle-wall collision

wall at

O

58

Particle-particle collision prediction

Collision prediction.
e Particle i: radius s;, position (rx; ry), velocity (vxi, vy;).
o Particle j: radius s;, position (rxj, ry;), velocity (vx;, vyj).
« Will particles i and j collide? If so, when?

(vxi" Vyi‘)
h
(vx;', vy
m; RGN
\ (vx;, vy;)
rx:, ry;
(l yl) (rxll’ ’,.ylV)
l '
time =t time =t + At i
L (vx;, vy))

Particle-particle

collision prediction

Collision prediction.

e Particle i: radius s;, position (rx; ry), velocity (vxi, vy;).

o Particle j: radius s;, position (rxj, ry;), velocity (vx;, vyj).

« Will particles i and j collide? If so, when?

At = <

[0 if Av-Ar >0,
o0 it d < 0,
Av-Ar + Vd ,
L Ao Ad otherwise

d = (Av-Ar)?> — (Av-Av) (Ar-Ar — s%), s=5;+ s;

2 2
Av=(Avx, Avy) = (vx;=vx;, vy, —vy;) Av - Av=(Avx)” + (Avy)

Ar=(Arx, Ary) = (rx;—rx;, ry;,—ry;)

Ar - Ar = (Arx)* + (Ary)?
Av - Ar = (Avx)(Arx)+ (Avy)(Ary)

Important note: This is physics, so we won’t be testing you on it!

60

Particle-particle collision resolution

Collision resolution. When two particles collide, how does velocity change?

vx, = vx; + Jx/m,
Vyi, = vy, + Jy/m, Newton's second law
4 < (momentum form)
VX; = VX - Jx / m;
vyj' = Vy; — Jy/ m;
J Arzx J Ar 2m; m; (Av - Ar
JCU — , Jy p— y’ J — J ()
S S s (m; +m;)

impulse due to normal force
(conservation of energy, conservation of momentum)

Important note: This is physics, so we won’t be testing you on it!

61

Particle data type skeleton

public class Particle

{

private double rx, ry; // position

private double vx, vy; // velocity

private final double radius; // radius

private final double mass; // mass

private int count; // number of collisions
public Particle(...) { ... }

public void move(double dt) { ... }

public void draw() { ... }

public double timeToHit(Particle that) { } | -
public double timeToHitVerticalwWall() {13 predict collision
{3

public double timeToHitHorizontalwall()

with particle or wall

public void bounceOff(Particle that) {} N
pubTic void bounceOffVerticalwall() {} resolve collision
{3

public void bounceOffHorizontalwall()

with particle or wall

62

http://algs4.cs.princeton.edu/61event/Particle.java.html

Collision system: event-driven simulation main loop

I N Itlal | Zat | on. two pirticles on a collision course
« Fill PQ with all potential particle-wall collisions. 3
« Fill PQ with all potential particle-particle collisions. ><

\ third particle interferes: no collision

“potential” since collision is invalidated
if some other collision intervenes ~
P

An invalidated event

Main loop.
e Delete the impending event from PQ (min priority = 7).
If the event has been invalidated, ignore it.
Advance all particles to time ¢, on a straight-line trajectory.
Update the velocities of the colliding particle(s).
Predict future particle-wall and particle-particle collisions involving the

colliding particle(s) and insert events onto PQ.

63

Event data type

Conventions.

« Neither particle nu11 = particle-particle collision.

e One particle nulT = particle-wall collision.

« Both particles nu1l = redraw event.

private static class Event implements Comparable<Event>

{

private final double time; // time of event

private final Particle a, b; // particles involved in event
private final int countA, countB; // collision counts of a and b

public Event(double t, Particle a, Particle b)
{ ...}

Create event

public 1nt compareTo(Event that) ordered by time

{ return this.time - that.time; }
public boolean 1sValid() valid if no intervening collisions
{ ...} (compare collision counts)

Particle collision simulation: example 1

% java CollisionSystem 100

® ® o ®
° ® o
® o o
1; . . ° ‘: °*
° ° . o’
I 4 = o & °
® °
¢ ° :? ° ® ®
d @
® ® ®
° @
° i ¢ ."
® ® ® ° ® :qp
¢ ®
.. ® ° ° .
‘%5 ° ®
¢ °

65

Particle collision simulation: example 2

% java CollisionSystem < billiards.txt

66

Particle collision simulation: example 3

% java CollisionSystem < brownian.txt

67

Particle collision simulation: example 4

% java CollisionSystem < diffusion.txt

OQQ‘QOQQ‘” 00000000000

68

