AlgOI‘ltth ROBERT SEDGEWICK | KEVIN WAYNE Subtext of today’s lecture (and this course)

Steps to developing a usable algorithm.
» Model the problem.
« Find an algorithm to solve it.
« Fast enough? Fits in memory?

1.5 UNION-FIND « If not, figure out why not.
« Find a way to address the problem.
» dynamic connectivity « Iterate until satisfied.

» quick find
\ . The scientific method.
» quick union

Algorithms

' > improvements Mathematical analysis.

» applications

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

Dynamic connectivity problem

Given a set of N objects, support two operation:
« Connect two objects.
 Is there a path connecting the two objects?

1.5 UNION-FIND

» dynamic connectivity 0

are 0 and 7 connected? % e a

are 8 and 9 connected? v

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE connect 5 and 0
http://algs4.cs.princeton.edu connect 7 and 2
connect 6 and 1

connect I and 0

are 0 and 7 connected? v

A larger connectivity example Modeling the objects

Q. Is there a path connecting pand ¢ ? Applications involve manipulating objects of all types.
» Pixels in a digital photo.

o Computers in a network.

« Friends in a social network.

« Transistors in a computer chip.

e Elements in a mathematical set.

« Variable names in a Fortran program.

» Metallic sites in a composite system.

When programming, convenient to name objects 0 to N - 1.

« Use integers as array index.

» Suppress details not relevant to union-find.

can use symbol table to translate from site
names to integers: stay tuned (Chapter 3)

A. Yes.
5
Modeling the connections Implementing the operations
We assume "is connected to" is an equivalence relation: Find. In which component is object p?
» Reflexive: pis connected to p. Connected. Are objects p and g in the same component?
* Symmetric: if p is connected to ¢, then g is connected to p. Union. Replace components containing objects p and ¢ with their union.

* Transitive: if p is connected to ¢ and ¢ is connected to r,
then p is connected to r.

Connected component. Maximal set of objects that are mutually connected.

1 1=

{0}{145}ry{23671} {0}ry{14531r{23677:} {0}{12345671}

3 connected components 3 connected components 2 connected components

Union-find data type (API)

Goal. Design efficient data structure for union-find.
« Number of objects N can be huge.
« Number of operations M can be huge.
« Union and find operations may be intermixed.

public class UF

Dynamic-connectivity client

initialize union-find data structure

UF(int N) . ,
with N singleton objects (0 to N — 1)
void union(int p, int q) add connection between p and q
int find(int p) component identifier for p (0 to N — I)
boolean connected(int p, int q) are p and q in the same component?

public boolean connected(int p, int q)
{ return find(p) == find(q); 1}

1-line implementation of connected()

1.5 UNION-FIND

« Read in number of objects N from standard input.
» Repeat:
— read in pair of integers from standard input
— if they are not yet connected, connect them and print out pair

» quick find
Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

public static void main(String[] args) % more tinyUF.txt
{ 10
int N = StdIn.readInt(); 4 3
UF uf = new UF(N); 38
while (!StdIn.isEmpty()) 65
{ 9 4
int p = StdIn.readInt(); 21
int g = StdIn.readInt();
if (luf.connected(p, q)) >0
{ 72 already connected
uf.union(p, q); 61
StdOut.printin(p + " " + q);
}
}
}
Quick-find [eager approach]
Data structure. if and only if

« Integer array id[] of length N. /
 Interpretation: id[p] is the id of the component containing p.

0, 5 and 6 are connected

id[] 0 1 1 8 8 0 O 1 8 8 1, 2, and 7 are connected

3, 4, 8, and 9 are connected

Quick-find [eager approach]

Data structure.
 Integer array id[] of length N.
« Interpretation: id[p] is the id of the component containing p.

id[] 1 0

Find. What is the id of p? id[6] = 0;id[1] = 1

) 6 and 1 are not connected
Connected. Do p and q have the same id?

Union. To merge components containing p and g, change all entries
whose id equals id[p] to id[q].

id[] 1 1 1 1 1 1 after union of 6 and 1

I 11

problem: many values can change

Quick-find demo

idh 1 1 1 8 8 1 1 1 8 8

Quick-find demo

O

idl 0 I 2 3 4 5 6 7 8

Quick-find: Java implementation

public class QuickFindUF

{
private int[] id;

public QuickFindUF(int N)

{
id = new int[N];
for (int i = 0; i < N; i++) —
id[i] = 1i;

}

public int find(int p) —

{ return id[p]l; 3}

public void union(int p, int q)

{
int pid = id[p];
int gid = id[q];
for (int i = 0; i < id.length; i++) <«———
if (id[i] == pid) id[i] = qid;
}

set id of each object to itself
(N array accesses)

return the id of p
(1 array access)

change all entries with id[p] to id[q]
(at most 2N + 2 array accesses)

Quick-find is too slow

Cost model. Number of array accesses (for read or write).

R
N N 1 1

quick-find

order of growth of number of array accesses

quadratic

'd

Union is too expensive. It takes N2 array accesses to process
a sequence of N union operations on N objects.

1.5 UNION-FIND

» quick union

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

Quadratic algorithms do not scale

Rough standard (for now).
. i hi
« 109 operations per second. UL B LT
« 109 words of main memory. /

» Touch all words in approximately 1 second.

Ex. Huge problem for quick-find.
« 109 union commands on 109 objects.
« Quick-find takes more than 1018 operations.

« 30+ years of computer time! tine »
quadratic
647
Quadratic algorithms don't scale with technology.
« New computer may be 10x as fast.
o But, has 10x as much memory = 327
want to solve a problem that is 10x as big.

« With quadratic algorithm, takes 10x as long!]Z: ”"‘:’”ﬂl"’”

e~ 1K 2K 4K 8k

Quick-union [lazy approach]

Data structure.
« Integer array id[] of length N.

keep going until it doesn’t change
« Interpretation: id[i] is parent of i. _~ (algorithm ensures no cycles)

« Root of i is id[id[id[...id[i]...1]1].
e0® © 6

idl 0 I 9 4 9 6 6 7 8 9 ee

3

parent of 3 is 4

root of 3 is 9

20

Quick-union [lazy approach]

Data structure.
 Integer array id[] of length N.
 Interpretation: id[i] is parent of i.
o Root of i is id[id[id[...id[i]...]11].

OXOROMONONO,
9 4 9 6 6 7 8 9 ® ® O
» @

root of 3 is 9
root of 5 is 6

idll 0 1

Find. What is the root of p?

Connected. Do p and g have the same root? 3 and 5 are not connected

Union. To merge components containing p and q,

© O ® O ®

set the id of p's root to the id of g's root.)
5 K
idl 0O 1 9 4 9 6 6 7 8 6) (4
1 P
only one value changes 21

Quick-union demo

Quick-union demo

O

ONONONONONONORORONO

idl 0 I 2 3 4 5 6 7 8 9

Quick-union: Java implementation

public class QuickUnionUF

{

private int[] id;

public QuickUnionUF(int N)

{
id = new int[N]; set id of each object to itself
for (int i = 0; i < N; i++) id[i] = i; < (N array accesses)

3

public int find(int i)

{
while (i != id[i]) i = id[i]; chase parent pointers until reach root

. —)

return 1; (depth of i array accesses)

}

public void union(int p, int q)

{
int i = find(p); change root of p to point to root of q
int j = find(q); T (depth of p and q array accesses)
id[i] = J;

}

}

22

24

Quick-union is also too slow

Cost model. Number of array accesses (for read or write).

N N 1 1

quick-find

quick-union N Nt N N <«—— worst case

1 includes cost of finding roots

Quick-find defect.
« Union too expensive (N array accesses).
« Trees are flat, but too expensive to keep them flat.

Quick-union defect.
« Trees can get tall.
» Find/connected too expensive (could be N array accesses).

25

Improvement 1: weighting

Weighted quick-union.
« Modify quick-union to avoid tall trees.
» Keep track of size of each tree (number of objects).
« Balance by linking root of smaller tree to root of larger tree.

\

reasonable alternatives:

quick-union @ @ union by height or "rank"
smaller /
tree @
smaller larger
. free tree
lareer might put the
arger larger tree lower
tree
weighted
@ _always chooses the @
K better alternative /
larger smaller smaller larger
tree tree tree tree

27

1.5 UNION-FIND

Algorithms

» improvements

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

Weighted quick-union demo

ONONONONONONORORONO

idl 0 I 2 3 4 5 6 7 8 9

28

Weighted quick-union demo

idl 6 2 6 4 6 6 6 2 4 4

Weighted quick-union: Java implementation

Data structure. Same as quick-union, but maintain extra array sz[1i]
to count number of objects in the tree rooted at 1.

Find/connected. Identical to quick-union.
Union. Modify quick-union to:

 Link root of smaller tree to root of larger tree.
« Update the sz[] array.

int i = find(p);
int j = find(q);

if (i == j) return;
if (sz[i] < sz[j1) { id[i]l = j; sz[j] += sz[i]; }
else { id[j]1 = i; sz[i] += sz[j]; }

31

Quick-union and weighted quick-union example

quick-union

weig

hted

AN

average distance to root: 5.11

e

Quick-union and weighted quick-union (100 sites, 88 union() operations)

Weighted quick-union analysis

average distance to root: 1.52

Running time.

« Find: takes time proportional to depth of p.

« Union: takes constant time, given roots.

/

Ig = base-2 logarithm

Proposition. Depth of any node x is at most Ig N.

depth 2

N =10
depth(x) =3 < IgN

30

22

Weighted quick-union analysis

Running time.
e Find: takes time proportional to depth of p.

« Union: takes constant time, given roots.
Ig = base-2 logarithm

/

Proposition. Depth of any node x is at most Ig N.

Pf. What causes the depth of object x to increase?

Increases by 1 when tree T containing x is merged into another tree 7>.
» The size of the tree containing x at least doubles since | 72| = | T |.
 Size of tree containing x can double at most Ig N times. Why?

o H» N =

Ig N

)]

Improvement 2: path compression

Quick union with path compression. Just after computing the root of p,
set the id[] of each examined node to point to that root.

33

Weighted quick-union analysis

Running time.
» Find: takes time proportional to depth of p.
« Union: takes constant time, given roots.

Proposition. Depth of any node x is at most Ig N.

N N 1 1

quick-find
quick-union N Nt N N
weighted QU N IgNt Ig N IgN

t includes cost of finding roots

Q. Stop at guaranteed acceptable performance?
A. No, easy to improve further.

34

Improvement 2: path compression

Quick union with path compression. Just after computing the root of p,
set the id[] of each examined node to point to that root.

35

36

Improvement 2: path compression

Quick union with path compression. Just after computing the root of p,
set the id[] of each examined node to point to that root.

0 root

Improvement 2: path compression

Quick union with path compression. Just after computing the root of p,
set the id[] of each examined node to point to that root.

Bottom line. Now, find() has the side effect of compressing the tree.

37

39

Improvement 2: path compression

Quick union with path compression. Just after computing the root of p,
set the id[] of each examined node to point to that root.

Path compression: Java implementation

Two-pass implementation: add second loop to find() to set the id[]
of each examined node to the root.

Simpler one-pass variant (path halving): Make every other node in path
point to its grandparent.

public int find(int 1)

{
while (i != id[i])
{
id[i1] = id[id[i]]; <«———— onlyone extraline of code!
i = 1d[i];
}
return i;
}

In practice. No reason not to! Keeps tree almost completely flat.

38

40

Weighted quick-union with path compression: amortized analysis Summary

Proposition. [Hopcroft-Ulman, Tarjan] Starting from an “ Key point. Weighted quick union (and/or path compression) makes it
empty data structure, any sequence of M union-find ops : 0 possible to solve problems that could not otherwise be addressed.
on N objects makes < ¢(N+Mlg* N) array accesses. 5 :
« Analysis can be improved to N+ M a(M, N). 4 5
« Simple algorithm with fascinating mathematics. 6 3 quick-find M N
65536 4 quick-union MN
265536 > weighted QU N + M log N
Linear-time algorithm for M union-find ops on N objects? ferated g function QU + path compression N+Mlog N
« Cost within constant factor of reading in the data. weighted QU + path compression N+ M Ig* N

 In theory, WQUPC is not quite linear.

order of growth for M union-find operations on a set of N objects

 In practice, WQUPC is linear.

Ex. [109 unions and finds with 109 objects]
Amazing fact. [Fredman-Saks] No linear-time algorithm exists. « WQUPC reduces time from 30 years to 6 seconds.
N » Supercomputer won't help much; good algorithm enables solution.

in "cell-probe"” model of computation
41 42

Union-find applications

« Percolation.
« Games (Go, Hex).
v Dynamic connectivity.
» Least common ancestor.

1.5 UNION-FIND « Equivalence of finite state automata.
» Hoshen-Kopelman algorithm in physics.

« Hinley-Milner polymorphic type inference.
e Kruskal's minimum spanning tree algorithm.
« Compiling equivalence statements in Fortran.
AlgOI‘itth « Morphological attribute openings and closings.
« Matlab's bwlabel() function in image processing.
» applications

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

44

Percolation

An abstract model for many physical systems:
N-by-N grid of sites.

Each site is open with probability p (and blocked with probability 1 - p).
System percolates iff top and bottom are connected by open sites.

percolates does not percolate

. blocked
site

open —
site

N

no open site connected to top

open site connected to top

45

Likelihood of percolation

Depends on grid size N and site vacancy probability p.

p low (0.4)

p medium (0.6)
does not percolate

percolates?

p high (0.8)
percolates

47

Percolation

An abstract model for many physical systems:
e N-by-N grid of sites.

« Each site is open with probability p (and blocked with probability 1 - p).
« System percolates iff top and bottom are connected by open sites.

m

electricity

material conductor insulated conducts
fluid flow material empty blocked porous
social interaction population person empty communicates

Percolation phase transition

When N is large, theory guarantees a sharp threshold p*.
« p > p*: almost certainly percolates.

« p < p*: almost certainly does not percolate.

Q. What is the value of p* ?

percolation
probability

OT I |
0 0.593 1

N= 100 site vacancy probability p

46

48

Monte Carlo simulation Dynamic connectivity solution to estimate percolation threshold

« Initialize all sites in an N-by-N grid to be blocked. Q. How to check whether an N-by-N system percolates?
» Declare random sites open until top connected to bottom. A. Model as a dynamic connectivity problem and use union-find.
* Vacancy percentage estimates p*.

full open site
(connected to top)

empty open site
(not connected to top)

. blocked site

N=20 135 open sites D open site

. blocked site
49

Dynamic connectivity solution to estimate percolation threshold Dynamic connectivity solution to estimate percolation threshold
Q. How to check whether an N-by-N system percolates? Q. How to check whether an N-by-N system percolates?
» Create an object for each site and name them 0 to N2 1. » Create an object for each site and name them 0 to N2 1.

« Sites are in same component iff connected by open sites.

- @O0 6@ = oo o 90
®@®0® G U B
OO OO ® oo
CRORONONG IR
DOOO G ° oo

D open site D open site
. blocked site - . blocked site

Dynamic connectivity solution to estimate percolation threshold Dynamic connectivity solution to estimate percolation threshold

Q. How to check whether an N-by-N system percolates? Clever trick. Introduce 2 virtual sites (and connections to top and bottom).
« Create an object for each site and name them 0 to N2 1. « Percolates iff virtual top site is connected to virtual bottom site.

- Sites are in same component iff connected by open sites. More efficient algorithm: only 1 call to connected)

» Percolates iff any site on bottom row is connected to any site on top row.

) virtual top site
brute-force algorithm: N 2 calls to connected()

o—o O @ toprow N=5 o—o O @ toprow
e O ©o o ® 6 o o
® O © e O o
® 6 o o ® 6 o o
® 0@ rotomrow ® O0—0 rottomrow
D open sie D open site virtual bottom site
. blocked site - . blocked site
Dynamic connectivity solution to estimate percolation threshold Dynamic connectivity solution to estimate percolation threshold
Q. How to model opening a new site? Q. How to model opening a new site?
A. Mark new site as open; connect it to all of its adjacent open sites.
AN
up to 4 calls to union()
open this site open this site
*—o O ® N=5
e O o o
® O ©
® 6 o o
® 069°

D open site D open site
. blocked site - . blocked site

Percolation threshold

Q. What is percolation threshold p* ?

A. About 0.592746 for large square lattices.

~N

constant known only via simulation

percolation
probability

0

0

N =100

Fast algorithm enables accurate answer to scientific question.

|
0.593

I
1

site vacancy probability p

57

Subtext of today’s lecture (and this course)

Steps to developing a usable algorithm.

Model the problem.

Find an algorithm to solve it.

Fast enough? Fits in memory?

If not, figure out why.

Find a way to address the problem.
Iterate until satisfied.

The scientific method.

Mathematical analysis.

58

