2.4 PRIORITY QUEUES

- API and elementary implementations
- binary heaps
- heapsort
- event-driven simulation
2.4 Priority Queues

- API and elementary implementations
- binary heaps
- heapsort
- event-driven simulation
Collections

A **collection** is a data type that stores a group of items.

<table>
<thead>
<tr>
<th>data type</th>
<th>core operations</th>
<th>data structure</th>
</tr>
</thead>
<tbody>
<tr>
<td>stack</td>
<td>Push, Pop</td>
<td>linked list, resizing array</td>
</tr>
<tr>
<td>queue</td>
<td>ENQUEUE, DEQUEUE</td>
<td>linked list, resizing array</td>
</tr>
<tr>
<td>priority queue</td>
<td>INSERT, DELETE-MAX</td>
<td>binary heap</td>
</tr>
<tr>
<td>symbol table</td>
<td>PUT, GET, DELETE</td>
<td>binary search tree, hash table</td>
</tr>
<tr>
<td>set</td>
<td>ADD, CONTAINS, DELETE</td>
<td>binary search tree, hash table</td>
</tr>
</tbody>
</table>

“Show me your code and conceal your data structures, and I shall continue to be mystified. Show me your data structures, and I won't usually need your code; it'll be obvious.” — Fred Brooks
Priority queue

Collections. Insert and delete items. Which item to delete?

Stack. Remove the item most recently added.
Queue. Remove the item least recently added.
Randomized queue. Remove a random item.

Priority queue. Remove the largest (or smallest) item.

Generalizes: stack, queue, randomized queue.

<table>
<thead>
<tr>
<th>operation</th>
<th>argument</th>
<th>return value</th>
</tr>
</thead>
<tbody>
<tr>
<td>insert</td>
<td>P</td>
<td></td>
</tr>
<tr>
<td>insert</td>
<td>Q</td>
<td></td>
</tr>
<tr>
<td>insert</td>
<td>E</td>
<td></td>
</tr>
<tr>
<td>remove max</td>
<td></td>
<td>Q</td>
</tr>
<tr>
<td>insert</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>insert</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>insert</td>
<td>M</td>
<td></td>
</tr>
<tr>
<td>remove max</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>insert</td>
<td>P</td>
<td></td>
</tr>
<tr>
<td>insert</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td>insert</td>
<td>E</td>
<td></td>
</tr>
<tr>
<td>remove max</td>
<td></td>
<td>P</td>
</tr>
</tbody>
</table>
Priority queue API

Requirement. Items are generic; they must also be Comparable.

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MaxPQ()</td>
<td>create an empty priority queue</td>
</tr>
<tr>
<td>MaxPQ(Key[] a)</td>
<td>create a priority queue with given keys</td>
</tr>
<tr>
<td>void insert(Key v)</td>
<td>insert a key into the priority queue</td>
</tr>
<tr>
<td>Key delMax()</td>
<td>return and remove a largest key</td>
</tr>
<tr>
<td>boolean isEmpty()</td>
<td>is the priority queue empty?</td>
</tr>
<tr>
<td>Key max()</td>
<td>return a largest key</td>
</tr>
<tr>
<td>int size()</td>
<td>number of entries in the priority queue</td>
</tr>
</tbody>
</table>

Note. Duplicate keys allowed; `delMax()` picks any maximum key.
Priority queue: applications

- Event-driven simulation. [customers in a line, colliding particles]
- Numerical computation. [reducing roundoff error]
- Discrete optimization. [bin packing, scheduling]
- Artificial intelligence. [A* search]
- Computer networks. [web cache]
- Operating systems. [load balancing, interrupt handling]
- Data compression. [Huffman codes]
- Graph searching. [Dijkstra's algorithm, Prim's algorithm]
- Number theory. [sum of powers]
- Spam filtering. [Bayesian spam filter]
- Statistics. [online median in data stream]
Priority queue: client example

Challenge. Find the largest m items in a stream of n items.
- Fraud detection: isolate $$ transactions.
- NSA monitoring: flag most suspicious documents.

Constraint. Not enough memory to store n items.

```java
MinPQ<Transaction> pq = new MinPQ<Transaction>();
while (StdIn.hasNextLine())
{
    String line = StdIn.readLine();
    Transaction transaction = new Transaction(line);
    pq.insert(transaction);
    if (pq.size() > m)
    {
        pq.delMin();
    }
}
```

Transaction data type is Comparable (ordered by $$)

use a min-oriented pq

pq now contains largest m items

n huge, m large
Challenge. Find the largest m items in a stream of n items.

<table>
<thead>
<tr>
<th>implementation</th>
<th>time</th>
<th>space</th>
</tr>
</thead>
<tbody>
<tr>
<td>sort</td>
<td>$n \log n$</td>
<td>n</td>
</tr>
<tr>
<td>elementary PQ</td>
<td>$m \cdot n$</td>
<td>m</td>
</tr>
<tr>
<td>binary heap</td>
<td>$n \log m$</td>
<td>m</td>
</tr>
<tr>
<td>best in theory</td>
<td>n</td>
<td>m</td>
</tr>
</tbody>
</table>

order of growth of finding the largest m in a stream of n items
A sequence of operations on a priority queue
Challenge. Implement all operations efficiently.

<table>
<thead>
<tr>
<th>implementation</th>
<th>insert</th>
<th>del max</th>
<th>max</th>
</tr>
</thead>
<tbody>
<tr>
<td>unordered array</td>
<td>1</td>
<td>n</td>
<td>n</td>
</tr>
<tr>
<td>ordered array</td>
<td>n</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>goal</td>
<td>$\log n$</td>
<td>$\log n$</td>
<td>$\log n$</td>
</tr>
</tbody>
</table>

order of growth of running time for priority queue with n items

Solution. Partially-ordered array.
2.4 Priority Queues

- API and elementary implementations
- Binary heaps
- Heapsort
- Event-driven simulation
Complete binary tree

Binary tree. Empty or node with links to left and right binary trees.

Complete tree. Perfectly balanced, except for bottom level.

Property. Height of complete binary tree with \(n \) nodes is \([\lg n]\).

Pf. Height increases only when \(n \) is a power of 2.
A complete binary tree in nature

Hyphaene Compressa - Doum Palm

© Shlomit Pinter
Binary heap: representation

Binary heap. Array representation of a heap-ordered complete binary tree.

Heap-ordered binary tree.
- Keys in nodes.
- Parent's key no smaller than children's keys.

Array representation.
- Indices start at 1.
- Take nodes in level order.
- No explicit links needed!
Binary heap: properties

Proposition. Largest key is \(a[1] \), which is root of binary tree.

Proposition. Can use array indices to move through tree.

- Parent of node at \(k \) is at \(k/2 \).
- Children of node at \(k \) are at \(2k \) and \(2k+1 \).
Binary heap demo

Insert. Add node at end, then swim it up.

Remove the maximum. Exchange root with node at end, then sink it down.

heap ordered

```
T
/  \
P   R
|   |
N   H
|   |
E   I
|   |
G
```

```
T P R N H O A E I G
```
Binary heap demo

Insert. Add node at end, then swim it up.
Remove the maximum. Exchange root with node at end, then sink it down.

heap ordered
Binary heap: promotion

Scenario. A key becomes larger than its parent's key.

To eliminate the violation:
- Exchange key in child with key in parent.
- Repeat until heap order restored.

```java
private void swim(int k)
{
    while (k > 1 && less(k/2, k))
    {
        exch(k, k/2);
        k = k/2;
    }
}
```

Peter principle. Node promoted to level of incompetence.
Binary heap: insertion

Insert. Add node at end, then swim it up.
Cost. At most $1 + \lg n$ compares.

```java
public void insert(Key x) {
    pq[++n] = x;
    swim(n);
}
```
Binary heap: demotion

Scenario. A key becomes *smaller* than one (or both) of its children's.

To eliminate the violation:
- Exchange key in parent with key in larger child.
- Repeat until heap order restored.

```java
private void sink(int k) {
    while (2*k <= n) {
        int j = 2*k;
        if (j < n && less(j, j+1)) j++;
        if (!less(k, j)) break;
        exch(k, j);
        k = j;
    }
}
```

Power struggle. Better subordinate promoted.
Binary heap: delete the maximum

Delete max. Exchange root with node at end, then sink it down.

Cost. At most $2 \log n$ compares.

```java
public Key delMax()
{
    Key max = pq[1];
    exch(1, n--);
    sink(1);
    pq[n+1] = null;
    return max;
}
```
public class MaxPQ<Key extends Comparable<Key>>
{
 private Key[] pq;
 private int n;

 public MaxPQ(int capacity)
 {
 pq = (Key[]) new Comparable[capacity+1];
 }

 public boolean isEmpty()
 {
 return n == 0;
 }

 public void insert(Key key) // see previous code
 public Key delMax() // see previous code

 private void swim(int k) // see previous code
 private void sink(int k) // see previous code

 private boolean less(int i, int j)
 {
 return pq[i].compareTo(pq[j]) < 0;
 }

 private void exch(int i, int j)
 {
 Key t = pq[i]; pq[i] = pq[j]; pq[j] = t;
 }
}
Priority queue: implementations cost summary

<table>
<thead>
<tr>
<th>implementation</th>
<th>insert</th>
<th>del max</th>
<th>max</th>
</tr>
</thead>
<tbody>
<tr>
<td>unordered array</td>
<td>1</td>
<td>n</td>
<td>n</td>
</tr>
<tr>
<td>ordered array</td>
<td>n</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>binary heap</td>
<td>$\log n$</td>
<td>$\log n$</td>
<td>1</td>
</tr>
</tbody>
</table>

order-of-growth of running time for priority queue with n items
Goal. Delete a random key from a binary heap in logarithmic time.
Goal. Delete a random key from a binary heap in logarithmic time.

Solution.
- Pick a random index r between 1 and n.
- Perform $\text{exch}(r, n--)$.
- Perform either $\text{sink}(r)$ or $\text{swim}(r)$.
DELETE-RANDOM FROM A BINARY HEAP

Goal. Delete a random key from a binary heap in logarithmic time.

Solution.
- Pick a random index r between 1 and n.
- Perform $\text{exch}(r, n--)$.
- Perform either $\text{sink}(r)$ or $\text{swim}(r)$.
Do "half-exchanges" in sink and swim.

- Reduces number of array accesses.
- Worth doing.
Floyd's "bounce" heuristic.

- Sink key at root all the way to bottom. ⟷ only 1 compare per node
- Swim key back up. ⟷ some extra compares and exchanges
- Overall, fewer compares; more exchanges.

R. W. Floyd
1978 Turing award
Multiway heaps.

- Complete \(d\)-way tree.
- Parent's key no smaller than its children's keys.

Fact. Height of complete \(d\)-way tree on \(n\) nodes is \(\sim \log_d n\).
Priority queues: quiz 1

How many compares (in the worst case) to insert in a d-way heap?

A. $\sim \log_2 n$

B. $\sim \log_d n$

C. $\sim d \log_2 n$

D. $\sim d \log_d n$

E. I don't know.
Priority queues: quiz 2

How many compares (in the worst case) to delete-max in a d-way heap?

A. $\sim \log_2 n$

B. $\sim \log_d n$

C. $\sim d \log_2 n$

D. $\sim d \log_d n$

E. I don't know.
Priority queue: implementation cost summary

<table>
<thead>
<tr>
<th>implementation</th>
<th>insert</th>
<th>del max</th>
<th>max</th>
</tr>
</thead>
<tbody>
<tr>
<td>unordered array</td>
<td>1</td>
<td>n</td>
<td>n</td>
</tr>
<tr>
<td>ordered array</td>
<td>n</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>binary heap</td>
<td>$\log n$</td>
<td>$\log n$</td>
<td>1</td>
</tr>
<tr>
<td>d–ary heap</td>
<td>$\log_d n$</td>
<td>$d \log_d n$</td>
<td>1</td>
</tr>
<tr>
<td>Fibonacci</td>
<td>1</td>
<td>$\log n \dagger$</td>
<td>1</td>
</tr>
<tr>
<td>Brodal queue</td>
<td>1</td>
<td>$\log n$</td>
<td>1</td>
</tr>
<tr>
<td>impossible</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

† amortized

Order-of-growth of running time for priority queue with n items

sweet spot: $d = 4$

why impossible?
Binary heap: considerations

Underflow and overflow.
- Underflow: throw exception if deleting from empty PQ.
- Overflow: add no-arg constructor and use resizing array.

Minimum-oriented priority queue.
- Replace less() with greater().
- Implement greater().

Other operations.
- Remove an arbitrary item.
- Change the priority of an item.

Immutability of keys.
- Assumption: client does not change keys while they're on the PQ.
- Best practice: use immutable keys.

leads to log n amortized time per op (how to make worst case?)

can implement efficiently with sink() and swim() [stay tuned for Prim/Dijkstra]
Immutability: implementing in Java

Data type. Set of values and operations on those values.

Immutable data type. Can't change the data type value once created.

```java
public class Vector {
    private final int n;
    private final double[] data;

    public Vector(double[] data) {
        this.n = data.length;
        this.data = new double[n];
        for (int i = 0; i < n; i++)
            this.data[i] = data[i];
    }
}
```

Immutable. String, Integer, Double, Color, Vector, Transaction, Point2D.
Mutable. StringBuilder, Stack, Counter, Java array.
Immutability: properties

Data type. Set of values and operations on those values.

Immutable data type. Can't change the data type value once created.

Advantages.
- Simplifies debugging.
- Simplifies concurrent programming.
- More secure in presence of hostile code.
- Safe to use as key in priority queue or symbol table.

Disadvantage. Must create new object for each data type value.

“Classes should be immutable unless there's a very good reason to make them mutable.... If a class cannot be made immutable, you should still limit its mutability as much as possible.”

—Joshua Bloch (Java architect)
2.4 Priority Queues

- API and elementary implementations
- binary heaps
- heapsort
- event-driven simulation
What is the name of this sorting algorithm?

A. Insertion sort.
B. Mergesort.
C. Quicksort.
D. None of the above.
E. I don't know.
What are its properties?

public void sort(String[] a)
{
 int n = a.length;
 MaxPQ<String> pq = new MaxPQ<String>();
 for (int i = 0; i < n; i++)
 pq.insert(a[i]);
 for (int i = n-1; i >= 0; i--)
 a[i] = pq.delMax();
}

A. \(n \log n \) compares in the worst case.
B. In-place.
C. Stable.
D. All of the above.
E. I don't know.
Heapsort

Basic plan for in-place sort.
- View input array as a complete binary tree.
- Heap construction: build a max-heap with all n keys.
- Sortdown: repeatedly remove the maximum key.
Heap construction. Build max heap using bottom-up method.

we assume array entries are indexed 1 to n

array in arbitrary order
Heapsort demo

Sortdown. Repeatedly delete the largest remaining item.

array in sorted order

<table>
<thead>
<tr>
<th>A</th>
<th>E</th>
<th>E</th>
<th>L</th>
<th>M</th>
<th>O</th>
<th>P</th>
<th>R</th>
<th>S</th>
<th>T</th>
<th>X</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
</tr>
</tbody>
</table>
Heapsort: heap construction

First pass. Build heap using bottom-up method.

for (int k = n/2; k >= 1; k--)
sink(a, k, n);

starting point (arbitrary order)
sink(5, 11)
sink(4, 11)
sink(3, 11)
sink(1, 11)

result (heap-ordered)
Second pass.

- Remove the maximum, one at a time.
- Leave in array, instead of nulling out.

while (n > 1)
{
 exch(a, 1, n--);
 sink(a, 1, n);
}
public class Heap
{
 public static void sort(Comparable[] a)
 {
 int n = a.length;
 for (int k = n/2; k >= 1; k--)
 sink(a, k, n);
 while (n > 1)
 {
 exch(a, 1, n);
 sink(a, 1, --n);
 }
 }
}

private static void sink(Comparable[] a, int k, int n)
{ /* as before */ }

private static boolean less(Comparable[] a, int i, int j)
{ /* as before */ }

private static void exch(Object[] a, int i, int j)
{ /* as before */ }

but make static (and pass arguments)

but convert from 1-based indexing to 0-base indexing
Heapsort: trace

<table>
<thead>
<tr>
<th>N</th>
<th>k</th>
<th>a[i]</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>5</td>
<td>S O R T L X A M P E E</td>
</tr>
<tr>
<td>11</td>
<td>4</td>
<td>S O R T L X A M P E E</td>
</tr>
<tr>
<td>11</td>
<td>3</td>
<td>S O X T L R A M P E E</td>
</tr>
<tr>
<td>11</td>
<td>2</td>
<td>S T X P L R A M O E E</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>X T S P L R A M O E E</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>T P S O L R A M E E X</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>S P R O L E A M E T X</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>R P E O L E A M S T X</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>P O E M L E A R S T X</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>O M E A L E P R S T X</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>M L E A E O P R S T X</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>L E E A M O P R S T X</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>E A E L M O P R S T X</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>E A E L M O P R S T X</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>A E E L M O P R S T X</td>
</tr>
</tbody>
</table>

Heapsort trace (array contents just after each sink)
Heapsort: mathematical analysis

Proposition. Heap construction makes $\leq n$ exchanges and $\leq 2n$ compares.

Pf sketch. [assume $n = 2^{h+1} - 1$]

\[
h + 2(h - 1) + 4(h - 2) + 8(h - 3) + \ldots + 2^h(0) = 2^{h+1} - h - 2 = N - (h - 1) \leq N
\]
Heapsort: mathematical analysis

Proposition. Heap construction uses \(\leq 2n \) compares and \(\leq n \) exchanges.

Proposition. Heapsort uses \(\leq 2n \lg n \) compares and exchanges.

algorithm can be improved to \(\sim n \lg n \)
(but no such variant is known to be practical)

Significance. In-place sorting algorithm with \(n \log n \) worst-case.

- Mergesort: no, linear extra space.
- Quicksort: no, quadratic time in worst case.
- Heapsort: yes!

Bottom line. Heapsort is optimal for both time and space, but:

- Inner loop longer than quicksort’s.
- Makes poor use of cache.
- Not stable.

in-place merge possible, not practical
\(n \log n \) worst-case quicksort possible, not practical

can be improved using advanced caching tricks
Introsort

Goal. As fast as quicksort in practice; $n \log n$ worst case, in place.

Introsort.

- Run quicksort.
- Cutoff to heapsort if stack depth exceeds $2 \log n$.
- Cutoff to insertion sort for $n = 16$.

In the wild. C++ STL, Microsoft .NET Framework.
Sorting algorithms: summary

<table>
<thead>
<tr>
<th>inplace?</th>
<th>stable?</th>
<th>best</th>
<th>average</th>
<th>worst</th>
<th>remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>selection</td>
<td>✔</td>
<td>$\frac{1}{2} n^2$</td>
<td>$\frac{1}{2} n^2$</td>
<td>$\frac{1}{2} n^2$</td>
<td>n exchanges</td>
</tr>
<tr>
<td>insertion</td>
<td>✔ ✔</td>
<td>n</td>
<td>$\frac{1}{4} n^2$</td>
<td>$\frac{1}{2} n^2$</td>
<td>use for small n or partially ordered</td>
</tr>
<tr>
<td>shell</td>
<td>✔</td>
<td>$n \log_3 n$</td>
<td>?</td>
<td>$c n^{3/2}$</td>
<td>tight code; subquadratic</td>
</tr>
<tr>
<td>merge</td>
<td>✔</td>
<td>$\frac{1}{2} n \log n$</td>
<td>$n \log n$</td>
<td>$n \log n$</td>
<td>$n \log n$ guarantee; stable</td>
</tr>
<tr>
<td>timsort</td>
<td>✔</td>
<td>n</td>
<td>$n \log n$</td>
<td>$n \log n$</td>
<td>improves mergesort when preexisting order</td>
</tr>
<tr>
<td>quick</td>
<td>✔</td>
<td>$n \log n$</td>
<td>$2 n \ln n$</td>
<td>$\frac{1}{2} n^2$</td>
<td>$n \log n$ probabilistic guarantee; fastest in practice</td>
</tr>
<tr>
<td>3-way quick</td>
<td>✔</td>
<td>n</td>
<td>$2 n \ln n$</td>
<td>$\frac{1}{2} n^2$</td>
<td>improves quicksort when duplicate keys</td>
</tr>
<tr>
<td>heap</td>
<td>✔</td>
<td>$3 n$</td>
<td>$2 n \log n$</td>
<td>$2 n \log n$</td>
<td>$n \log n$ guarantee; in-place</td>
</tr>
<tr>
<td>?</td>
<td>✔ ✔</td>
<td>n</td>
<td>$n \log n$</td>
<td>$n \log n$</td>
<td>holy sorting grail</td>
</tr>
</tbody>
</table>
2.4 PRIORITY QUEUES

- API and elementary implementations
- binary heaps
- heapsort
- event-driven simulation
Molecular dynamics simulation of hard discs

Goal. Simulate the motion of n moving particles that behave according to the laws of elastic collision.
Molecular dynamics simulation of hard discs

Goal. Simulate the motion of \(n \) moving particles that behave according to the laws of elastic collision.

Hard disc model.

- Moving particles interact via elastic collisions with each other and walls.
- Each particle is a disc with known position, velocity, mass, and radius.
- No other forces.

Significance. Relates macroscopic observables to microscopic dynamics.

- Einstein: explain Brownian motion of pollen grains.
Warmup: bouncing balls

Time-driven simulation. n bouncing balls in the unit square.

```java
public class BouncingBalls {

    public static void main(String[] args) {
        int n = Integer.parseInt(args[0]);
        Ball[] balls = new Ball[n];
        for (int i = 0; i < n; i++)
            balls[i] = new Ball();
        while (true) {
            StdDraw.clear();
            for (int i = 0; i < n; i++)
                { balls[i].move(0.5); balls[i].draw();
            }
            StdDraw.show(50);
        }
    }
}
```

% java BouncingBalls 100

main simulation loop
Warmup: bouncing balls

```java
public class Ball {
    private double rx, ry; // position
    private double vx, vy; // velocity
    private final double radius; // radius
    public Ball(...) {
        /* initialize position and velocity */
    }

    public void move(double dt) {
        if ((rx + vx*dt < radius) || (rx + vx*dt > 1.0 - radius)) { vx = -vx; }
        if ((ry + vy*dt < radius) || (ry + vy*dt > 1.0 - radius)) { vy = -vy; }
        rx = rx + vx*dt;
        ry = ry + vy*dt;
    }

    public void draw() {
        StdDraw.filledCircle(rx, ry, radius);
    }
}
```

Missing. Check for balls colliding with each other.
- Physics problems: when? what effect?
- CS problems: which object does the check? too many checks?
Time-driven simulation

- Discretize time in quanta of size dt.
- Update the position of each particle after every dt units of time, and check for overlaps.
- If overlap, roll back the clock to the time of the collision, update the velocities of the colliding particles, and continue the simulation.
Time-driven simulation

Main drawbacks.

- \(\sim n^2/2 \) overlap checks per time quantum.
- Simulation is too slow if \(dt \) is very small.
- May miss collisions if \(dt \) is too large.

 (if colliding particles fail to overlap when we are looking)
Event-driven simulation

Change state only when something interesting happens.
- Between collisions, particles move in straight-line trajectories.
- Focus only on times when collisions occur.
- Maintain PQ of collision events, prioritized by time.
- Delete min = get next collision.

Collision prediction. Given position, velocity, and radius of a particle, when will it collide next with a wall or another particle?

Collision resolution. If collision occurs, update colliding particle(s) according to laws of elastic collisions.
Particle-wall collision

Collision prediction and resolution.

- Particle of radius s at position (rx, ry).
- Particle moving in unit box with velocity (vx, vy).
- Will it collide with a vertical wall? If so, when?

\[
\text{prediction (at time } t \text{)} \\
\text{ } dt = \text{time to hit wall} \\
\text{ } = \text{distance/velocity} \\
\text{ } = \frac{(1-s-r_x)}{v_x}
\]

\[
\text{resolution (at time } t + dt \text{)} \\
\text{velocity after collision} = (-vx, vy) \\
\text{position after collision} = (1-s, ry+vydt)
\]

Finding and resolving a particle-wall collision
Particle-particle collision prediction

Collision prediction.

- Particle i: radius s_i, position (rx_i, ry_i), velocity (vx_i, vy_i).
- Particle j: radius s_j, position (rx_j, ry_j), velocity (vx_j, vy_j).
- Will particles i and j collide? If so, when?
Particle-particle collision prediction

Collision prediction.

- Particle i: radius s_i, position (rx_i, ry_i), velocity (vx_i, vy_i).
- Particle j: radius s_j, position (rx_j, ry_j), velocity (vx_j, vy_j).
- Will particles i and j collide? If so, when?

$$
\Delta t = \begin{cases}
\infty & \text{if } \Delta v \cdot \Delta r \geq 0, \\
\infty & \text{if } d < 0, \\
- \frac{\Delta v \cdot \Delta r + \sqrt{d}}{\Delta v \cdot \Delta v} & \text{otherwise}
\end{cases}
$$

$$
d = (\Delta v \cdot \Delta r)^2 - (\Delta v \cdot \Delta v)(\Delta r \cdot \Delta r - s^2), \quad s = s_i + s_j
$$

$$
\begin{align*}
\Delta v &= (\Delta vx, \Delta vy) = (vx_i - vx_j, vy_i - vy_j) \\
\Delta r &= (\Delta rx, \Delta ry) = (rx_i - rx_j, ry_i - ry_j) \\
\Delta v \cdot \Delta v &= (\Delta vx)^2 + (\Delta vy)^2 \\
\Delta r \cdot \Delta r &= (\Delta rx)^2 + (\Delta ry)^2 \\
\Delta v \cdot \Delta r &= (\Delta vx)(\Delta rx) + (\Delta vy)(\Delta ry)
\end{align*}
$$

Important note: This is physics, so we won’t be testing you on it!
Particle-particle collision resolution

Collision resolution. When two particles collide, how does velocity change?

\[
\begin{align*}
v_{x_i}' &= v_{x_i} + \frac{J_x}{m_i} \\
v_{y_i}' &= v_{y_i} + \frac{J_y}{m_i} \\
v_{x_j}' &= v_{x_j} - \frac{J_x}{m_j} \\
v_{y_j}' &= v_{y_j} - \frac{J_y}{m_j}
\end{align*}
\]

Newton's second law (momentum form)

\[
J_x = \frac{J \Delta r_x}{s}, \quad J_y = \frac{J \Delta r_y}{s}, \quad J = \frac{2 m_i m_j (\Delta v \cdot \Delta r)}{s (m_i + m_j)}
\]

Impulse due to normal force
(conservation of energy, conservation of momentum)

Important note: This is physics, so we won’t be testing you on it!
public class Particle
{
 private double rx, ry; // position
 private double vx, vy; // velocity
 private final double radius; // radius
 private final double mass; // mass
 private int count; // number of collisions

 public Particle(...) { ... }

 public void move(double dt) { ... }
 public void draw() { ... }

 public double timeToHit(Particle that) { } // predict collision with particle or wall
 public double timeToHitVerticalWall() { }
 public double timeToHitHorizontalWall() { }

 public void bounceOff(Particle that) { } // resolve collision with particle or wall
 public void bounceOffVerticalWall() { }
 public void bounceOffHorizontalWall() { }
}
Collision system: event-driven simulation main loop

Initialization.
- Fill PQ with all potential particle-wall collisions.
- Fill PQ with all potential particle-particle collisions.

Main loop.
- Delete the impending event from PQ (min priority = t).
- If the event has been invalidated, ignore it.
- Advance all particles to time t, on a straight-line trajectory.
- Update the velocities of the colliding particle(s).
- Predict future particle-wall and particle-particle collisions involving the colliding particle(s) and insert events onto PQ.
Event data type

Conventions.

- Neither particle null ⇒ particle-particle collision.
- One particle null ⇒ particle-wall collision.
- Both particles null ⇒ redraw event.

declared in

private static class Event implements Comparable<Event>
{
 private final double time; // time of event
 private final Particle a, b; // particles involved in event
 private final int countA, countB; // collision counts of a and b

 public Event(double t, Particle a, Particle b)
 {
 ...
 }

 public int compareTo(Event that)
 {
 return this.time - that.time;
 }

 public boolean isValid()
 {
 return true;
 }
}

create event

ordered by time

valid if no intervening collisions (compare collision counts)
Particle collision simulation: example 1

% java CollisionSystem 100
Particle collision simulation: example 2

% java CollisionSystem < billiards.txt
Particle collision simulation: example 3

% java CollisionSystem < brownian.txt
Particle collision simulation: example 4

```java
% javaCollisionSystem < diffusion.txt
```