SegmentTree.java


Below is the syntax highlighted version of SegmentTree.java.


/******************************************************************************
 *  Compilation:  javac SegmentTree.java
 *  Execution:    java SegmentTree
 *  
 *  A segment tree data structure.
 *
 ******************************************************************************/

package edu.princeton.cs.algs4;

import java.util.Arrays;

/**
 * The {@code SegmentTree} class is an structure for efficient search of cummulative data.
 * It performs  Range Minimum Query and Range Sum Query in O(log(n)) time.
 * It can be easily customizable to support Range Max Query, Range Multiplication Query etc.
 * <p>
 * Also it has been develop with  {@code LazyPropagation} for range updates, which means
 * when you perform update operations over a range, the update process affects the least nodes as possible
 * so that the bigger the range you want to update the less time it consumes to update it. Eventually those changes will be propagated
 * to the children and the whole array will be up to date.
 * <p>
 * Example:
 * <p>
 * SegmentTreeHeap st = new SegmentTreeHeap(new Integer[]{1,3,4,2,1, -2, 4});
 * st.update(0,3, 1)
 * In the above case only the node that represents the range [0,3] will be updated (and not their children) so in this case
 * the update task will be less than n*log(n)
 *
 * Memory usage:  O(n)
 *
 * @author Ricardo Pacheco 
 */
public class SegmentTree {

    private Node[] heap;
    private int[] array;
    private int size;

    /**
     * Time-Complexity:  O(n*log(n))
     *
     * @param array the Initialization array
     */
    public SegmentTree(int[] array) {
        this.array = Arrays.copyOf(array, array.length);
        //The max size of this array is about 2 * 2 ^ log2(n) + 1
        size = (int) (2 * Math.pow(2.0, Math.floor((Math.log((double) array.length) / Math.log(2.0)) + 1)));
        heap = new Node[size];
        build(1, 0, array.length);
    }


    public int size() {
        return array.length;
    }

    //Initialize the Nodes of the Segment tree
    private void build(int v, int from, int size) {
        heap[v] = new Node();
        heap[v].from = from;
        heap[v].to = from + size - 1;

        if (size == 1) {
            heap[v].sum = array[from];
            heap[v].min = array[from];
        } else {
            //Build childs
            build(2 * v, from, size / 2);
            build(2 * v + 1, from + size / 2, size - size / 2);

            heap[v].sum = heap[2 * v].sum + heap[2 * v + 1].sum;
            //min = min of the children
            heap[v].min = Math.min(heap[2 * v].min, heap[2 * v + 1].min);
        }
    }

    /**
     * Range Sum Query
     *
     * Time-Complexity: O(log(n))
     *
     * @param  from from index
     * @param  to to index
     * @return sum
     */
    public int rsq(int from, int to) {
        return rsq(1, from, to);
    }

    private int rsq(int v, int from, int to) {
        Node n = heap[v];

        //If you did a range update that contained this node, you can infer the Sum without going down the tree
        if (n.pendingVal != null && contains(n.from, n.to, from, to)) {
            return (to - from + 1) * n.pendingVal;
        }

        if (contains(from, to, n.from, n.to)) {
            return heap[v].sum;
        }

        if (intersects(from, to, n.from, n.to)) {
            propagate(v);
            int leftSum = rsq(2 * v, from, to);
            int rightSum = rsq(2 * v + 1, from, to);

            return leftSum + rightSum;
        }

        return 0;
    }

    /**
     * Range Min Query
     * 
     * Time-Complexity: O(log(n))
     *
     * @param  from from index
     * @param  to to index
     * @return min
     */
    public int rMinQ(int from, int to) {
        return rMinQ(1, from, to);
    }

    private int rMinQ(int v, int from, int to) {
        Node n = heap[v];


        //If you did a range update that contained this node, you can infer the Min value without going down the tree
        if (n.pendingVal != null && contains(n.from, n.to, from, to)) {
            return n.pendingVal;
        }

        if (contains(from, to, n.from, n.to)) {
            return heap[v].min;
        }

        if (intersects(from, to, n.from, n.to)) {
            propagate(v);
            int leftMin = rMinQ(2 * v, from, to);
            int rightMin = rMinQ(2 * v + 1, from, to);

            return Math.min(leftMin, rightMin);
        }

        return Integer.MAX_VALUE;
    }


    /**
     * Range Update Operation.
     * With this operation you can update either one position or a range of positions with a given number.
     * The update operations will update the less it can to update the whole range (Lazy Propagation).
     * The values will be propagated lazily from top to bottom of the segment tree.
     * This behavior is really useful for updates on portions of the array
     * <p>
     * Time-Complexity: O(log(n))
     *
     * @param from  from index
     * @param to    to index
     * @param value value
     */
    public void update(int from, int to, int value) {
        update(1, from, to, value);
    }

    private void update(int v, int from, int to, int value) {

        //The Node of the heap tree represents a range of the array with bounds: [n.from, n.to]
        Node n = heap[v];

        /**
         * If the updating-range contains the portion of the current Node  We lazily update it.
         * This means We do NOT update each position of the vector, but update only some temporal
         * values into the Node; such values into the Node will be propagated down to its children only when they need to.
         */
        if (contains(from, to, n.from, n.to)) {
            change(n, value);
        }

        if (n.size() == 1) return;

        if (intersects(from, to, n.from, n.to)) {
            /**
             * Before keeping going down to the tree We need to propagate the
             * the values that have been temporally/lazily saved into this Node to its children
             * So that when We visit them the values  are properly updated
             */
            propagate(v);

            update(2 * v, from, to, value);
            update(2 * v + 1, from, to, value);

            n.sum = heap[2 * v].sum + heap[2 * v + 1].sum;
            n.min = Math.min(heap[2 * v].min, heap[2 * v + 1].min);
        }
    }

    //Propagate temporal values to children
    private void propagate(int v) {
        Node n = heap[v];

        if (n.pendingVal != null) {
            change(heap[2 * v], n.pendingVal);
            change(heap[2 * v + 1], n.pendingVal);
            n.pendingVal = null; //unset the pending propagation value
        }
    }

    //Save the temporal values that will be propagated lazily
    private void change(Node n, int value) {
        n.pendingVal = value;
        n.sum = n.size() * value;
        n.min = value;
        array[n.from] = value;

    }

    //Test if the range1 contains range2
    private boolean contains(int from1, int to1, int from2, int to2) {
        return from2 >= from1 && to2 <= to1;
    }

    //check inclusive intersection, test if range1[from1, to1] intersects range2[from2, to2]
    private boolean intersects(int from1, int to1, int from2, int to2) {
        return from1 <= from2 && to1 >= from2   //  (.[..)..] or (.[...]..)
                || from1 >= from2 && from1 <= to2; // [.(..]..) or [..(..)..
    }

    //The Node class represents a partition range of the array.
    static class Node {
        int sum;
        int min;
        //Here We store the value that will be propagated lazily
        Integer pendingVal = null;
        int from;
        int to;

        int size() {
            return to - from + 1;
        }

    }

    /**
     * Read the following commands:
     * init n v     Initializes the array of size n with all v's
     * set a b c... Initializes the array  with [a, b, c ...]
     * rsq a b      Range Sum Query for the range [a, b]
     * rmq a b      Range Min Query for the range [a, b]
     * up  a b v    Update the [a,b] portion of the array with value v.
     * exit
     * <p>
     * Example:
     * init
     * set 1 2 3 4 5 6
     * rsq 1 3
     * Sum from 1 to 3 = 6
     * rmq 1 3
     * Min from 1 to 3 = 1
     * input up 1 3
     * [3,2,3,4,5,6]
     *
     * @param args the command-line arguments
     */
    public static void main(String[] args) {


        SegmentTree st = null;

        String cmd = "cmp";
        while (true) {
            String[] line = StdIn.readLine().split(" ");

            if (line[0].equals("exit")) break;

            int arg1 = 0, arg2 = 0, arg3 = 0;

            if (line.length > 1) {
                arg1 = Integer.parseInt(line[1]);
            }
            if (line.length > 2) {
                arg2 = Integer.parseInt(line[2]);
            }
            if (line.length > 3) {
                arg3 = Integer.parseInt(line[3]);
            }

            if ((!line[0].equals("set") && !line[0].equals("init")) && st == null) {
                StdOut.println("Segment Tree not initialized");
                continue;
            }
            int array[];
            if (line[0].equals("set")) {
                array = new int[line.length - 1];
                for (int i = 0; i < line.length - 1; i++) {
                    array[i] = Integer.parseInt(line[i + 1]);
                }
                st = new SegmentTree(array);
            }
            else if (line[0].equals("init")) {
                array = new int[arg1];
                Arrays.fill(array, arg2);
                st = new SegmentTree(array);

                for (int i = 0; i < st.size(); i++) {
                    StdOut.print(st.rsq(i, i) + " ");
                }
                StdOut.println();
            }

            else if (line[0].equals("up")) {
                st.update(arg1, arg2, arg3);
                for (int i = 0; i < st.size(); i++) {
                    StdOut.print(st.rsq(i, i) + " ");
                }
                StdOut.println();
            }
            else if (line[0].equals("rsq")) {
                StdOut.printf("Sum from %d to %d = %d%n", arg1, arg2, st.rsq(arg1, arg2));
            }
            else if (line[0].equals("rmq")) {
                StdOut.printf("Min from %d to %d = %d%n", arg1, arg2, st.rMinQ(arg1, arg2));
            }
            else {
                StdOut.println("Invalid command");
            }

        }
    }

}

/******************************************************************************
 *  Copyright 2002-2022, Robert Sedgewick and Kevin Wayne.
 *
 *  This file is part of algs4.jar, which accompanies the textbook
 *
 *      Algorithms, 4th edition by Robert Sedgewick and Kevin Wayne,
 *      Addison-Wesley Professional, 2011, ISBN 0-321-57351-X.
 *      http://algs4.cs.princeton.edu
 *
 *
 *  algs4.jar is free software: you can redistribute it and/or modify
 *  it under the terms of the GNU General Public License as published by
 *  the Free Software Foundation, either version 3 of the License, or
 *  (at your option) any later version.
 *
 *  algs4.jar is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *  GNU General Public License for more details.
 *
 *  You should have received a copy of the GNU General Public License
 *  along with algs4.jar.  If not, see http://www.gnu.org/licenses.
 ******************************************************************************/


Last updated: Sun Aug 25 05:05:43 PM EDT 2024.