Below is the syntax highlighted version of GaussianElimination.java.
/****************************************************************************** * Compilation: javac GaussianElimination.java * Execution: java GaussianElimination m n * Dependencies: StdOut.java * * Gaussian elimination with partial pivoting for m-by-n system. * * % java GaussianElimination m n * -1.000000 * 2.000000 * 2.000000 * * 3.000000 * -1.000000 * -2.000000 * * System is infeasible * * -6.250000 * -4.500000 * 0.000000 * 0.000000 * 1.000000 * * System is infeasible * * -1.375000 * 1.625000 * 0.000000 * ******************************************************************************/ package edu.princeton.cs.algs4; /** * The {@code GaussianElimination} data type provides methods * to solve a linear system of equations <em>Ax</em> = <em>b</em>, * where <em>A</em> is an <em>m</em>-by-<em>n</em> matrix * and <em>b</em> is a length <em>n</em> vector. * <p> * This is a bare-bones implementation that uses Gaussian elimination * with partial pivoting. * See <a href = "https://algs4.cs.princeton.edu/99scientific/GaussianEliminationLite.java.html">GaussianEliminationLite.java</a> * for a stripped-down version that assumes the matrix <em>A</em> is square * and nonsingular. See {@link GaussJordanElimination} for an alternate * implementation that uses Gauss-Jordan elimination. * For an industrial-strength numerical linear algebra library, * see <a href = "http://math.nist.gov/javanumerics/jama/">JAMA</a>. * <p> * This computes correct results if all arithmetic performed is * without floating-point rounding error or arithmetic overflow. * In practice, there will be floating-point rounding error; * partial pivoting helps prevent accumulated floating-point rounding * errors from growing out of control (though it does not * provide any guarantees). * <p> * For additional documentation, see * <a href="https://algs4.cs.princeton.edu/99scientific">Section 9.9</a> * <i>Algorithms, 4th Edition</i> by Robert Sedgewick and Kevin Wayne. * * @author Robert Sedgewick * @author Kevin Wayne */ public class GaussianElimination { private static final double EPSILON = 1.0E-8; private final int m; // number of rows private final int n; // number of columns private double[][] a; // m-by-(n+1) augmented matrix /** * Solves the linear system of equations <em>Ax</em> = <em>b</em>, * where <em>A</em> is an <em>m</em>-by-<em>n</em> matrix and <em>b</em> * is a length <em>m</em> vector. * * @param A the <em>m</em>-by-<em>n</em> constraint matrix * @param b the length <em>m</em> right-hand-side vector * @throws IllegalArgumentException if the dimensions disagree, i.e., * the length of {@code b} does not equal {@code m} */ public GaussianElimination(double[][] A, double[] b) { m = A.length; n = A[0].length; if (b.length != m) throw new IllegalArgumentException("Dimensions disagree"); // build augmented matrix a = new double[m][n+1]; for (int i = 0; i < m; i++) for (int j = 0; j < n; j++) a[i][j] = A[i][j]; for (int i = 0; i < m; i++) a[i][n] = b[i]; forwardElimination(); assert certifySolution(A, b); } // forward elimination private void forwardElimination() { for (int p = 0; p < Math.min(m, n); p++) { // find pivot row using partial pivoting int max = p; for (int i = p+1; i < m; i++) { if (Math.abs(a[i][p]) > Math.abs(a[max][p])) { max = i; } } // swap swap(p, max); // singular or nearly singular if (Math.abs(a[p][p]) <= EPSILON) { continue; } // pivot pivot(p); } } // swap row1 and row2 private void swap(int row1, int row2) { double[] temp = a[row1]; a[row1] = a[row2]; a[row2] = temp; } // pivot on a[p][p] private void pivot(int p) { for (int i = p+1; i < m; i++) { double alpha = a[i][p] / a[p][p]; for (int j = p; j <= n; j++) { a[i][j] -= alpha * a[p][j]; } } } /** * Returns a solution to the linear system of equations <em>Ax</em> = <em>b</em>. * * @return a solution <em>x</em> to the linear system of equations * <em>Ax</em> = <em>b</em>; {@code null} if no such solution */ public double[] primal() { // back substitution double[] x = new double[n]; for (int i = Math.min(n-1, m-1); i >= 0; i--) { double sum = 0.0; for (int j = i+1; j < n; j++) { sum += a[i][j] * x[j]; } if (Math.abs(a[i][i]) > EPSILON) x[i] = (a[i][n] - sum) / a[i][i]; else if (Math.abs(a[i][n] - sum) > EPSILON) return null; } // redundant rows for (int i = n; i < m; i++) { double sum = 0.0; for (int j = 0; j < n; j++) { sum += a[i][j] * x[j]; } if (Math.abs(a[i][n] - sum) > EPSILON) return null; } return x; } /** * Returns true if there exists a solution to the linear system of * equations <em>Ax</em> = <em>b</em>. * * @return {@code true} if there exists a solution to the linear system * of equations <em>Ax</em> = <em>b</em>; {@code false} otherwise */ public boolean isFeasible() { return primal() != null; } // check that Ax = b private boolean certifySolution(double[][] A, double[] b) { if (!isFeasible()) return true; double[] x = primal(); for (int i = 0; i < m; i++) { double sum = 0.0; for (int j = 0; j < n; j++) { sum += A[i][j] * x[j]; } if (Math.abs(sum - b[i]) > EPSILON) { StdOut.println("not feasible"); StdOut.println("b[" + i + "] = " + b[i] + ", sum = " + sum); return false; } } return true; } /** * Unit tests the {@code GaussianElimination} data type. */ private static void test(String name, double[][] A, double[] b) { StdOut.println("----------------------------------------------------"); StdOut.println(name); StdOut.println("----------------------------------------------------"); GaussianElimination gaussian = new GaussianElimination(A, b); double[] x = gaussian.primal(); if (gaussian.isFeasible()) { for (int i = 0; i < x.length; i++) { StdOut.printf("%.6f\n", x[i]); } } else { StdOut.println("System is infeasible"); } StdOut.println(); StdOut.println(); } // 3-by-3 nonsingular system private static void test1() { double[][] A = { { 0, 1, 1 }, { 2, 4, -2 }, { 0, 3, 15 } }; double[] b = { 4, 2, 36 }; test("test 1 (3-by-3 system, nonsingular)", A, b); } // 3-by-3 nonsingular system private static void test2() { double[][] A = { { 1, -3, 1 }, { 2, -8, 8 }, { -6, 3, -15 } }; double[] b = { 4, -2, 9 }; test("test 2 (3-by-3 system, nonsingular)", A, b); } // 5-by-5 singular: no solutions private static void test3() { double[][] A = { { 2, -3, -1, 2, 3 }, { 4, -4, -1, 4, 11 }, { 2, -5, -2, 2, -1 }, { 0, 2, 1, 0, 4 }, { -4, 6, 0, 0, 7 }, }; double[] b = { 4, 4, 9, -6, 5 }; test("test 3 (5-by-5 system, no solutions)", A, b); } // 5-by-5 singular: infinitely many solutions private static void test4() { double[][] A = { { 2, -3, -1, 2, 3 }, { 4, -4, -1, 4, 11 }, { 2, -5, -2, 2, -1 }, { 0, 2, 1, 0, 4 }, { -4, 6, 0, 0, 7 }, }; double[] b = { 4, 4, 9, -5, 5 }; test("test 4 (5-by-5 system, infinitely many solutions)", A, b); } // 3-by-3 singular: no solutions private static void test5() { double[][] A = { { 2, -1, 1 }, { 3, 2, -4 }, { -6, 3, -3 }, }; double[] b = { 1, 4, 2 }; test("test 5 (3-by-3 system, no solutions)", A, b); } // 3-by-3 singular: infinitely many solutions private static void test6() { double[][] A = { { 1, -1, 2 }, { 4, 4, -2 }, { -2, 2, -4 }, }; double[] b = { -3, 1, 6 }; test("test 6 (3-by-3 system, infinitely many solutions)", A, b); } // 4-by-3 full rank and feasible system private static void test7() { double[][] A = { { 0, 1, 1 }, { 2, 4, -2 }, { 0, 3, 15 }, { 2, 8, 14 } }; double[] b = { 4, 2, 36, 42 }; test("test 7 (4-by-3 system, full rank)", A, b); } // 4-by-3 full rank and infeasible system private static void test8() { double[][] A = { { 0, 1, 1 }, { 2, 4, -2 }, { 0, 3, 15 }, { 2, 8, 14 } }; double[] b = { 4, 2, 36, 40 }; test("test 8 (4-by-3 system, no solution)", A, b); } // 3-by-4 full rank system private static void test9() { double[][] A = { { 1, -3, 1, 1 }, { 2, -8, 8, 2 }, { -6, 3, -15, 3 } }; double[] b = { 4, -2, 9 }; test("test 9 (3-by-4 system, full rank)", A, b); } /** * Unit tests the {@code GaussianElimination} data type. * * @param args the command-line arguments */ public static void main(String[] args) { test1(); test2(); test3(); test4(); test5(); test6(); test7(); test8(); test9(); // n-by-n random system int n = Integer.parseInt(args[0]); double[][] A = new double[n][n]; for (int i = 0; i < n; i++) for (int j = 0; j < n; j++) A[i][j] = StdRandom.uniformInt(1000); double[] b = new double[n]; for (int i = 0; i < n; i++) b[i] = StdRandom.uniformInt(1000); test(n + "-by-" + n + " (probably nonsingular)", A, b); } } /****************************************************************************** * Copyright 2002-2022, Robert Sedgewick and Kevin Wayne. * * This file is part of algs4.jar, which accompanies the textbook * * Algorithms, 4th edition by Robert Sedgewick and Kevin Wayne, * Addison-Wesley Professional, 2011, ISBN 0-321-57351-X. * http://algs4.cs.princeton.edu * * * algs4.jar is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * algs4.jar is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with algs4.jar. If not, see http://www.gnu.org/licenses. ******************************************************************************/