Below is the syntax highlighted version of DirectedEulerianCycle.java.
/****************************************************************************** * Compilation: javac DirectedEulerianCycle.java * Execution: java DirectedEulerianCycle V E * Dependencies: Digraph.java Stack.java StdOut.java * BreadthFirstPaths.java * DigraphGenerator.java StdRandom.java * * Find an Eulerian cycle in a digraph, if one exists. * ******************************************************************************/ package edu.princeton.cs.algs4; import java.util.Iterator; /** * The {@code DirectedEulerianCycle} class represents a data type * for finding an Eulerian cycle or path in a digraph. * An <em>Eulerian cycle</em> is a cycle (not necessarily simple) that * uses every edge in the digraph exactly once. * <p> * This implementation uses a nonrecursive depth-first search. * The constructor takes Θ(<em>E</em> + <em>V</em>) time in the worst * case, where <em>E</em> is the number of edges and <em>V</em> is the * number of vertices * Each instance method takes Θ(1) time. * It uses Θ(<em>V</em>) extra space (not including the digraph). * <p> * To compute Eulerian paths in digraphs, see {@link DirectedEulerianPath}. * To compute Eulerian cycles and paths in undirected graphs, see * {@link EulerianCycle} and {@link EulerianPath}. * <p> * For additional documentation, * see <a href="https://algs4.cs.princeton.edu/42digraph">Section 4.2</a> of * <i>Algorithms, 4th Edition</i> by Robert Sedgewick and Kevin Wayne. * * @author Robert Sedgewick * @author Kevin Wayne * @author Nate Liu */ public class DirectedEulerianCycle { private Stack<Integer> cycle = null; // Eulerian cycle; null if no such cycle /** * Computes an Eulerian cycle in the specified digraph, if one exists. * * @param G the digraph */ public DirectedEulerianCycle(Digraph G) { // must have at least one edge if (G.E() == 0) return; // necessary condition: indegree(v) = outdegree(v) for each vertex v // (without this check, DFS might return a path instead of a cycle) for (int v = 0; v < G.V(); v++) if (G.outdegree(v) != G.indegree(v)) return; // create local view of adjacency lists, to iterate one vertex at a time Iterator<Integer>[] adj = (Iterator<Integer>[]) new Iterator[G.V()]; for (int v = 0; v < G.V(); v++) adj[v] = G.adj(v).iterator(); // initialize stack with any non-isolated vertex int s = nonIsolatedVertex(G); Stack<Integer> stack = new Stack<Integer>(); stack.push(s); // greedily add to putative cycle, depth-first search style cycle = new Stack<Integer>(); while (!stack.isEmpty()) { int v = stack.pop(); while (adj[v].hasNext()) { stack.push(v); v = adj[v].next(); } // add vertex with no more leaving edges to cycle cycle.push(v); } // check if all edges have been used // (in case there are two or more vertex-disjoint Eulerian cycles) if (cycle.size() != G.E() + 1) cycle = null; assert certifySolution(G); } /** * Returns the sequence of vertices on an Eulerian cycle. * * @return the sequence of vertices on an Eulerian cycle; * {@code null} if no such cycle */ public Iterable<Integer> cycle() { return cycle; } /** * Returns true if the digraph has an Eulerian cycle. * * @return {@code true} if the digraph has an Eulerian cycle; * {@code false} otherwise */ public boolean hasEulerianCycle() { return cycle != null; } // returns any non-isolated vertex; -1 if no such vertex private static int nonIsolatedVertex(Digraph G) { for (int v = 0; v < G.V(); v++) if (G.outdegree(v) > 0) return v; return -1; } /************************************************************************** * * The code below is solely for testing correctness of the data type. * **************************************************************************/ // Determines whether a digraph has an Eulerian cycle using necessary // and sufficient conditions (without computing the cycle itself): // - at least one edge // - indegree(v) = outdegree(v) for every vertex // - the graph is connected, when viewed as an undirected graph // (ignoring isolated vertices) private static boolean satisfiesNecessaryAndSufficientConditions(Digraph G) { // Condition 0: at least 1 edge if (G.E() == 0) return false; // Condition 1: indegree(v) == outdegree(v) for every vertex for (int v = 0; v < G.V(); v++) if (G.outdegree(v) != G.indegree(v)) return false; // Condition 2: graph is connected, ignoring isolated vertices Graph H = new Graph(G.V()); for (int v = 0; v < G.V(); v++) for (int w : G.adj(v)) H.addEdge(v, w); // check that all non-isolated vertices are connected int s = nonIsolatedVertex(G); BreadthFirstPaths bfs = new BreadthFirstPaths(H, s); for (int v = 0; v < G.V(); v++) if (H.degree(v) > 0 && !bfs.hasPathTo(v)) return false; return true; } // check that solution is correct private boolean certifySolution(Digraph G) { // internal consistency check if (hasEulerianCycle() == (cycle() == null)) return false; // hashEulerianCycle() returns correct value if (hasEulerianCycle() != satisfiesNecessaryAndSufficientConditions(G)) return false; // nothing else to check if no Eulerian cycle if (cycle == null) return true; // check that cycle() uses correct number of edges if (cycle.size() != G.E() + 1) return false; // check that cycle() is a directed cycle of G // TODO return true; } private static void unitTest(Digraph G, String description) { StdOut.println(description); StdOut.println("-------------------------------------"); StdOut.print(G); DirectedEulerianCycle euler = new DirectedEulerianCycle(G); StdOut.print("Eulerian cycle: "); if (euler.hasEulerianCycle()) { for (int v : euler.cycle()) { StdOut.print(v + " "); } StdOut.println(); } else { StdOut.println("none"); } StdOut.println(); } /** * Unit tests the {@code DirectedEulerianCycle} data type. * * @param args the command-line arguments */ public static void main(String[] args) { int V = Integer.parseInt(args[0]); int E = Integer.parseInt(args[1]); // Eulerian cycle Digraph G1 = DigraphGenerator.eulerianCycle(V, E); unitTest(G1, "Eulerian cycle"); // Eulerian path Digraph G2 = DigraphGenerator.eulerianPath(V, E); unitTest(G2, "Eulerian path"); // empty digraph Digraph G3 = new Digraph(V); unitTest(G3, "empty digraph"); // self loop Digraph G4 = new Digraph(V); int v4 = StdRandom.uniformInt(V); G4.addEdge(v4, v4); unitTest(G4, "single self loop"); // union of two disjoint cycles Digraph H1 = DigraphGenerator.eulerianCycle(V/2, E/2); Digraph H2 = DigraphGenerator.eulerianCycle(V - V/2, E - E/2); int[] perm = new int[V]; for (int i = 0; i < V; i++) perm[i] = i; StdRandom.shuffle(perm); Digraph G5 = new Digraph(V); for (int v = 0; v < H1.V(); v++) for (int w : H1.adj(v)) G5.addEdge(perm[v], perm[w]); for (int v = 0; v < H2.V(); v++) for (int w : H2.adj(v)) G5.addEdge(perm[V/2 + v], perm[V/2 + w]); unitTest(G5, "Union of two disjoint cycles"); // random digraph Digraph G6 = DigraphGenerator.simple(V, E); unitTest(G6, "simple digraph"); // 4-vertex digraph Digraph G7 = new Digraph(new In("eulerianD.txt")); unitTest(G7, "4-vertex Eulerian digraph"); } } /****************************************************************************** * Copyright 2002-2022, Robert Sedgewick and Kevin Wayne. * * This file is part of algs4.jar, which accompanies the textbook * * Algorithms, 4th edition by Robert Sedgewick and Kevin Wayne, * Addison-Wesley Professional, 2011, ISBN 0-321-57351-X. * http://algs4.cs.princeton.edu * * * algs4.jar is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * algs4.jar is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with algs4.jar. If not, see http://www.gnu.org/licenses. ******************************************************************************/