Below is the syntax highlighted version of BipartiteX.java.
/****************************************************************************** * Compilation: javac BipartiteX.java * Execution: java Bipartite V E F * Dependencies: Graph.java * * Given a graph, find either (i) a bipartition or (ii) an odd-length cycle. * Runs in O(E + V) time. * * ******************************************************************************/ package edu.princeton.cs.algs4; /** * The {@code BipartiteX} class represents a data type for * determining whether an undirected graph is <em>bipartite</em> or whether * it has an <em>odd-length cycle</em>. * A graph is bipartite if and only if it has no odd-length cycle. * The <em>isBipartite</em> operation determines whether the graph is * bipartite. If so, the <em>color</em> operation determines a * bipartition; if not, the <em>oddCycle</em> operation determines a * cycle with an odd number of edges. * <p> * This implementation uses <em>breadth-first search</em> and is nonrecursive. * The constructor takes Θ(<em>V</em> + <em>E</em>) time in * in the worst case, where <em>V</em> is the number of vertices * and <em>E</em> is the number of edges. * Each instance method takes Θ(1) time. * It uses Θ(<em>V</em>) extra space (not including the graph). * See {@link Bipartite} for a recursive version that uses depth-first search. * <p> * For additional documentation, * see <a href="https://algs4.cs.princeton.edu/41graph">Section 4.1</a> * of <i>Algorithms, 4th Edition</i> by Robert Sedgewick and Kevin Wayne. * * @author Robert Sedgewick * @author Kevin Wayne */ public class BipartiteX { private static final boolean WHITE = false; private static final boolean BLACK = true; private boolean isBipartite; // is the graph bipartite? private boolean[] color; // color[v] gives vertices on one side of bipartition private boolean[] marked; // marked[v] = true iff v has been visited in DFS private int[] edgeTo; // edgeTo[v] = last edge on path to v private Queue<Integer> cycle; // odd-length cycle /** * Determines whether an undirected graph is bipartite and finds either a * bipartition or an odd-length cycle. * * @param G the graph */ public BipartiteX(Graph G) { isBipartite = true; color = new boolean[G.V()]; marked = new boolean[G.V()]; edgeTo = new int[G.V()]; for (int v = 0; v < G.V() && isBipartite; v++) { if (!marked[v]) { bfs(G, v); } } assert check(G); } private void bfs(Graph G, int s) { Queue<Integer> q = new Queue<Integer>(); color[s] = WHITE; marked[s] = true; q.enqueue(s); while (!q.isEmpty()) { int v = q.dequeue(); for (int w : G.adj(v)) { if (!marked[w]) { marked[w] = true; edgeTo[w] = v; color[w] = !color[v]; q.enqueue(w); } else if (color[w] == color[v]) { isBipartite = false; // to form odd cycle, consider s-v path and s-w path // and let x be closest node to v and w common to two paths // then (w-x path) + (x-v path) + (edge v-w) is an odd-length cycle // Note: distTo[v] == distTo[w]; cycle = new Queue<Integer>(); Stack<Integer> stack = new Stack<Integer>(); int x = v, y = w; while (x != y) { stack.push(x); cycle.enqueue(y); x = edgeTo[x]; y = edgeTo[y]; } stack.push(x); while (!stack.isEmpty()) cycle.enqueue(stack.pop()); cycle.enqueue(w); return; } } } } /** * Returns true if the graph is bipartite. * * @return {@code true} if the graph is bipartite; {@code false} otherwise */ public boolean isBipartite() { return isBipartite; } /** * Returns the side of the bipartite that vertex {@code v} is on. * * @param v the vertex * @return the side of the bipartition that vertex {@code v} is on; two vertices * are in the same side of the bipartition if and only if they have the * same color * @throws IllegalArgumentException unless {@code 0 <= v < V} * @throws UnsupportedOperationException if this method is called when the graph * is not bipartite */ public boolean color(int v) { validateVertex(v); if (!isBipartite) throw new UnsupportedOperationException("Graph is not bipartite"); return color[v]; } /** * Returns an odd-length cycle if the graph is not bipartite, and * {@code null} otherwise. * * @return an odd-length cycle if the graph is not bipartite * (and hence has an odd-length cycle), and {@code null} * otherwise */ public Iterable<Integer> oddCycle() { return cycle; } private boolean check(Graph G) { // graph is bipartite if (isBipartite) { for (int v = 0; v < G.V(); v++) { for (int w : G.adj(v)) { if (color[v] == color[w]) { System.err.printf("edge %d-%d with %d and %d in same side of bipartition\n", v, w, v, w); return false; } } } } // graph has an odd-length cycle else { // verify cycle int first = -1, last = -1; for (int v : oddCycle()) { if (first == -1) first = v; last = v; } if (first != last) { System.err.printf("cycle begins with %d and ends with %d\n", first, last); return false; } } return true; } // throw an IllegalArgumentException unless {@code 0 <= v < V} private void validateVertex(int v) { int V = marked.length; if (v < 0 || v >= V) throw new IllegalArgumentException("vertex " + v + " is not between 0 and " + (V-1)); } /** * Unit tests the {@code BipartiteX} data type. * * @param args the command-line arguments */ public static void main(String[] args) { int V1 = Integer.parseInt(args[0]); int V2 = Integer.parseInt(args[1]); int E = Integer.parseInt(args[2]); int F = Integer.parseInt(args[3]); // create random bipartite graph with V1 vertices on left side, // V2 vertices on right side, and E edges; then add F random edges Graph G = GraphGenerator.bipartite(V1, V2, E); for (int i = 0; i < F; i++) { int v = StdRandom.uniformInt(V1 + V2); int w = StdRandom.uniformInt(V1 + V2); G.addEdge(v, w); } StdOut.println(G); BipartiteX b = new BipartiteX(G); if (b.isBipartite()) { StdOut.println("Graph is bipartite"); for (int v = 0; v < G.V(); v++) { StdOut.println(v + ": " + b.color(v)); } } else { StdOut.print("Graph has an odd-length cycle: "); for (int x : b.oddCycle()) { StdOut.print(x + " "); } StdOut.println(); } } } /****************************************************************************** * Copyright 2002-2022, Robert Sedgewick and Kevin Wayne. * * This file is part of algs4.jar, which accompanies the textbook * * Algorithms, 4th edition by Robert Sedgewick and Kevin Wayne, * Addison-Wesley Professional, 2011, ISBN 0-321-57351-X. * http://algs4.cs.princeton.edu * * * algs4.jar is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * algs4.jar is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with algs4.jar. If not, see http://www.gnu.org/licenses. ******************************************************************************/