BipartiteX.java


Below is the syntax highlighted version of BipartiteX.java.


/******************************************************************************
 *  Compilation:  javac BipartiteX.java
 *  Execution:    java  Bipartite V E F
 *  Dependencies: Graph.java
 *
 *  Given a graph, find either (i) a bipartition or (ii) an odd-length cycle.
 *  Runs in O(E + V) time.
 *
 *
 ******************************************************************************/

package edu.princeton.cs.algs4;


/**
 *  The {@code BipartiteX} class represents a data type for
 *  determining whether an undirected graph is <em>bipartite</em> or whether
 *  it has an <em>odd-length cycle</em>.
 *  A graph is bipartite if and only if it has no odd-length cycle.
 *  The <em>isBipartite</em> operation determines whether the graph is
 *  bipartite. If so, the <em>color</em> operation determines a
 *  bipartition; if not, the <em>oddCycle</em> operation determines a
 *  cycle with an odd number of edges.
 *  <p>
 *  This implementation uses <em>breadth-first search</em> and is nonrecursive.
 *  The constructor takes &Theta;(<em>V</em> + <em>E</em>) time in
 *  in the worst case, where <em>V</em> is the number of vertices
 *  and <em>E</em> is the number of edges.
 *  Each instance method takes &Theta;(1) time.
 *  It uses &Theta;(<em>V</em>) extra space (not including the graph).
 *  See {@link Bipartite} for a recursive version that uses depth-first search.
 *  <p>
 *  For additional documentation,
 *  see <a href="https://algs4.cs.princeton.edu/41graph">Section 4.1</a>
 *  of <i>Algorithms, 4th Edition</i> by Robert Sedgewick and Kevin Wayne.
 *
 *  @author Robert Sedgewick
 *  @author Kevin Wayne
 */
public class BipartiteX {
    private static final boolean WHITE = false;
    private static final boolean BLACK = true;

    private boolean isBipartite;   // is the graph bipartite?
    private boolean[] color;       // color[v] gives vertices on one side of bipartition
    private boolean[] marked;      // marked[v] = true iff v has been visited in DFS
    private int[] edgeTo;          // edgeTo[v] = last edge on path to v
    private Queue<Integer> cycle;  // odd-length cycle

    /**
     * Determines whether an undirected graph is bipartite and finds either a
     * bipartition or an odd-length cycle.
     *
     * @param  G the graph
     */
    public BipartiteX(Graph G) {
        isBipartite = true;
        color  = new boolean[G.V()];
        marked = new boolean[G.V()];
        edgeTo = new int[G.V()];

        for (int v = 0; v < G.V() && isBipartite; v++) {
            if (!marked[v]) {
                bfs(G, v);
            }
        }
        assert check(G);
    }

    private void bfs(Graph G, int s) {
        Queue<Integer> q = new Queue<Integer>();
        color[s] = WHITE;
        marked[s] = true;
        q.enqueue(s);

        while (!q.isEmpty()) {
            int v = q.dequeue();
            for (int w : G.adj(v)) {
                if (!marked[w]) {
                    marked[w] = true;
                    edgeTo[w] = v;
                    color[w] = !color[v];
                    q.enqueue(w);
                }
                else if (color[w] == color[v]) {
                    isBipartite = false;

                    // to form odd cycle, consider s-v path and s-w path
                    // and let x be closest node to v and w common to two paths
                    // then (w-x path) + (x-v path) + (edge v-w) is an odd-length cycle
                    // Note: distTo[v] == distTo[w];
                    cycle = new Queue<Integer>();
                    Stack<Integer> stack = new Stack<Integer>();
                    int x = v, y = w;
                    while (x != y) {
                        stack.push(x);
                        cycle.enqueue(y);
                        x = edgeTo[x];
                        y = edgeTo[y];
                    }
                    stack.push(x);
                    while (!stack.isEmpty())
                        cycle.enqueue(stack.pop());
                    cycle.enqueue(w);
                    return;
                }
            }
        }
    }

    /**
     * Returns true if the graph is bipartite.
     *
     * @return {@code true} if the graph is bipartite; {@code false} otherwise
     */
    public boolean isBipartite() {
        return isBipartite;
    }

    /**
     * Returns the side of the bipartite that vertex {@code v} is on.
     *
     * @param  v the vertex
     * @return the side of the bipartition that vertex {@code v} is on; two vertices
     *         are in the same side of the bipartition if and only if they have the
     *         same color
     * @throws IllegalArgumentException unless {@code 0 <= v < V}
     * @throws UnsupportedOperationException if this method is called when the graph
     *         is not bipartite
     */
    public boolean color(int v) {
        validateVertex(v);
        if (!isBipartite)
            throw new UnsupportedOperationException("Graph is not bipartite");
        return color[v];
    }


    /**
     * Returns an odd-length cycle if the graph is not bipartite, and
     * {@code null} otherwise.
     *
     * @return an odd-length cycle if the graph is not bipartite
     *         (and hence has an odd-length cycle), and {@code null}
     *         otherwise
     */
    public Iterable<Integer> oddCycle() {
        return cycle;
    }

    private boolean check(Graph G) {
        // graph is bipartite
        if (isBipartite) {
            for (int v = 0; v < G.V(); v++) {
                for (int w : G.adj(v)) {
                    if (color[v] == color[w]) {
                        System.err.printf("edge %d-%d with %d and %d in same side of bipartition\n", v, w, v, w);
                        return false;
                    }
                }
            }
        }

        // graph has an odd-length cycle
        else {
            // verify cycle
            int first = -1, last = -1;
            for (int v : oddCycle()) {
                if (first == -1) first = v;
                last = v;
            }
            if (first != last) {
                System.err.printf("cycle begins with %d and ends with %d\n", first, last);
                return false;
            }
        }
        return true;
    }

    // throw an IllegalArgumentException unless {@code 0 <= v < V}
    private void validateVertex(int v) {
        int V = marked.length;
        if (v < 0 || v >= V)
            throw new IllegalArgumentException("vertex " + v + " is not between 0 and " + (V-1));
    }

    /**
     * Unit tests the {@code BipartiteX} data type.
     *
     * @param args the command-line arguments
     */
    public static void main(String[] args) {
        int V1 = Integer.parseInt(args[0]);
        int V2 = Integer.parseInt(args[1]);
        int E  = Integer.parseInt(args[2]);
        int F  = Integer.parseInt(args[3]);

        // create random bipartite graph with V1 vertices on left side,
        // V2 vertices on right side, and E edges; then add F random edges
        Graph G = GraphGenerator.bipartite(V1, V2, E);
        for (int i = 0; i < F; i++) {
            int v = StdRandom.uniformInt(V1 + V2);
            int w = StdRandom.uniformInt(V1 + V2);
            G.addEdge(v, w);
        }

        StdOut.println(G);


        BipartiteX b = new BipartiteX(G);
        if (b.isBipartite()) {
            StdOut.println("Graph is bipartite");
            for (int v = 0; v < G.V(); v++) {
                StdOut.println(v + ": " + b.color(v));
            }
        }
        else {
            StdOut.print("Graph has an odd-length cycle: ");
            for (int x : b.oddCycle()) {
                StdOut.print(x + " ");
            }
            StdOut.println();
        }
    }


}

/******************************************************************************
 *  Copyright 2002-2022, Robert Sedgewick and Kevin Wayne.
 *
 *  This file is part of algs4.jar, which accompanies the textbook
 *
 *      Algorithms, 4th edition by Robert Sedgewick and Kevin Wayne,
 *      Addison-Wesley Professional, 2011, ISBN 0-321-57351-X.
 *      http://algs4.cs.princeton.edu
 *
 *
 *  algs4.jar is free software: you can redistribute it and/or modify
 *  it under the terms of the GNU General Public License as published by
 *  the Free Software Foundation, either version 3 of the License, or
 *  (at your option) any later version.
 *
 *  algs4.jar is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *  GNU General Public License for more details.
 *
 *  You should have received a copy of the GNU General Public License
 *  along with algs4.jar.  If not, see http://www.gnu.org/licenses.
 ******************************************************************************/


Last updated: Fri Oct 25 01:36:00 PM EDT 2024.