Below is the syntax highlighted version of Accumulator.java.
/****************************************************************************** * Compilation: javac Accumulator.java * Execution: java Accumulator < input.txt * Dependencies: StdOut.java StdIn.java * * Mutable data type that calculates the mean, sample standard * deviation, and sample variance of a stream of real numbers * use a stable, one-pass algorithm. * ******************************************************************************/ package edu.princeton.cs.algs4; /** * The {@code Accumulator} class is a data type for computing the running * mean, sample standard deviation, and sample variance of a stream of real * numbers. It provides an example of a mutable data type and a streaming * algorithm. * <p> * This implementation uses a one-pass algorithm that is less susceptible * to floating-point roundoff error than the more straightforward * implementation based on saving the sum of the squares of the numbers. * This technique is due to * <a href = "https://en.wikipedia.org/wiki/Algorithms_for_calculating_variance#Welford's_online_algorithm">B. P. Welford</a>. * Each operation takes constant time in the worst case. * The amount of memory is constant - the data values are not stored. * <p> * For additional documentation, * see <a href="https://algs4.cs.princeton.edu/12oop">Section 1.2</a> of * <i>Algorithms, 4th Edition</i> by Robert Sedgewick and Kevin Wayne. * * @author Robert Sedgewick * @author Kevin Wayne */ public class Accumulator { private int n = 0; // number of data values private double sum = 0.0; // sample variance * (n-1) private double mu = 0.0; // sample mean /** * Initializes an accumulator. */ public Accumulator() { } /** * Adds the specified data value to the accumulator. * @param x the data value */ public void addDataValue(double x) { n++; double delta = x - mu; mu += delta / n; sum += (double) (n - 1) / n * delta * delta; } /** * Returns the mean of the data values. * @return the mean of the data values */ public double mean() { return mu; } /** * Returns the sample variance of the data values. * @return the sample variance of the data values */ public double var() { if (n <= 1) return Double.NaN; return sum / (n - 1); } /** * Returns the sample standard deviation of the data values. * @return the sample standard deviation of the data values */ public double stddev() { return Math.sqrt(this.var()); } /** * Returns the number of data values. * @return the number of data values */ public int count() { return n; } /** * Returns a string representation of this accumulator. * @return a string representation of this accumulator */ public String toString() { return "n = " + n + ", mean = " + mean() + ", stddev = " + stddev(); } /** * Unit tests the {@code Accumulator} data type. * Reads in a stream of real number from standard input; * adds them to the accumulator; and prints the mean, * sample standard deviation, and sample variance to standard * output. * * @param args the command-line arguments */ public static void main(String[] args) { Accumulator stats = new Accumulator(); while (!StdIn.isEmpty()) { double x = StdIn.readDouble(); stats.addDataValue(x); } StdOut.printf("n = %d\n", stats.count()); StdOut.printf("mean = %.5f\n", stats.mean()); StdOut.printf("stddev = %.5f\n", stats.stddev()); StdOut.printf("var = %.5f\n", stats.var()); StdOut.println(stats); } } /****************************************************************************** * Copyright 2002-2022, Robert Sedgewick and Kevin Wayne. * * This file is part of algs4.jar, which accompanies the textbook * * Algorithms, 4th edition by Robert Sedgewick and Kevin Wayne, * Addison-Wesley Professional, 2011, ISBN 0-321-57351-X. * http://algs4.cs.princeton.edu * * * algs4.jar is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * algs4.jar is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with algs4.jar. If not, see http://www.gnu.org/licenses. ******************************************************************************/