Below is the syntax highlighted version of Polygon.java
from §9.1 Geometric Primitives.
/****************************************************************************** * Compilation: javac Polygon.java * Execution: java Polygon * Dependencies: Point.java * * Implementation of 2D polygon, possibly intersecting. * ******************************************************************************/ public class Polygon { private int N; // number of points in the polygon private Point[] a; // the points, setting points[0] = points[N] // default buffer = 4 public Polygon() { N = 0; a = new Point[4]; } // double size of array private void resize() { Point[] temp = new Point[2*N+1]; for (int i = 0; i <= N; i++) temp[i] = a[i]; a = temp; } // return size public int size() { return N; } // draw polygon public void draw() { for (int i = 0; i < N; i++) a[i].drawTo(a[i+1]); } // add point p to end of polygon public void add(Point p) { if (N >= a.length - 1) resize(); // resize array if needed a[N++] = p; // add point a[N] = a[0]; // close polygon } // return the perimeter public double perimeter() { double sum = 0.0; for (int i = 0; i < N; i++) sum = sum + a[i].distanceTo(a[i+1]); return sum; } // return signed area of polygon public double area() { double sum = 0.0; for (int i = 0; i < N; i++) { sum = sum + (a[i].x * a[i+1].y) - (a[i].y * a[i+1].x); } return 0.5 * sum; } // does this Polygon contain the point p? // if p is on boundary then 0 or 1 is returned, and p is in exactly one point of every partition of plane // Reference: http://exaflop.org/docs/cgafaq/cga2.html public boolean contains2(Point p) { int crossings = 0; for (int i = 0; i < N; i++) { int j = i + 1; boolean cond1 = (a[i].y <= p.y) && (p.y < a[j].y); boolean cond2 = (a[j].y <= p.y) && (p.y < a[i].y); if (cond1 || cond2) { // need to cast to double if (p.x < (a[j].x - a[i].x) * (p.y - a[i].y) / (a[j].y - a[i].y) + a[i].x) crossings++; } } if (crossings % 2 == 1) return true; else return false; } // does this Polygon contain the point p? // Reference: http://softsurfer.com/Archive/algorithm_0103/algorithm_0103.htm public boolean contains(Point p) { int winding = 0; for (int i = 0; i < N; i++) { int ccw = Point.ccw(a[i], a[i+1], p); if (a[i+1].y > p.y && p.y >= a[i].y) // upward crossing if (ccw == +1) winding++; if (a[i+1].y <= p.y && p.y < a[i].y) // downward crossing if (ccw == -1) winding--; } return winding != 0; } // return string representation of this point public String toString() { if (N == 0) return "[ ]"; String s = ""; s = s + "[ "; for (int i = 0; i <= N; i++) s = s + a[i] + " "; s = s + "]"; return s; } // test client public static void main(String[] args) { int N = Integer.parseInt(args[0]); // a square Polygon poly = new Polygon(); poly.add(new Point(5, 5)); poly.add(new Point(9, 5)); poly.add(new Point(9, 9)); poly.add(new Point(5, 9)); StdOut.println("polygon = " + poly); StdOut.println("perimeter = " + poly.perimeter()); StdOut.println("area = " + poly.area()); StdOut.println("contains(5, 5) = " + poly.contains(new Point(5, 5))); StdOut.println("contains(9, 5) = " + poly.contains(new Point(9, 5))); StdOut.println("contains(9, 9) = " + poly.contains(new Point(9, 9))); StdOut.println("contains(5, 9) = " + poly.contains(new Point(5, 9))); StdOut.println("contains(7, 5) = " + poly.contains(new Point(7, 5))); StdOut.println("contains(5, 7) = " + poly.contains(new Point(5, 7))); StdOut.println("contains(7, 9) = " + poly.contains(new Point(7, 9))); StdOut.println("contains(9, 7) = " + poly.contains(new Point(9, 7))); // generate N random points in the unit square and check what fraction are in the polygon int yes = 0; for (int i = 0; i < N; i++) { int x = (int) (10 * Math.random()); int y = (int) (10 * Math.random()); Point p = new Point(x, y); if (poly.contains(p)) yes++; if (poly.contains(p) != poly.contains2(p)) StdOut.println("different " + p); } // true answer is = 0.16 (depends on how boundary points are handled) StdOut.println("Fraction in polygon = " + 1.0 * yes / N); } }