Below is the syntax highlighted version of Point.java
from §9.1 Geometric Primitives.
/****************************************************************************** * Compilation: javac Point.java * Execution: java Point * * Implementation of 2D point using rectangular coordinates. * ******************************************************************************/ public class Point { public final int x; public final int y; // create and initialize a point with given (x, y) public Point(int x, int y) { this.x = x; this.y = y; } // return Euclidean distance between this point and that point public double distanceTo(Point that) { if (that == null) return Double.POSITIVE_INFINITY; double dx = this.x - that.x; double dy = this.y - that.y; return Math.hypot(dx, dy); } // draw point public void draw() { StdDraw.point(x, y); } // draw line segment between this point and that point public void drawTo(Point that) { StdDraw.line(this.x, this.y, that.x, that.y); } // is a->b->c a counter-clockwise turn? // +1 if counter-clockwise, -1 if clockwise, 0 if collinear public static int ccw(Point a, Point b, Point c) { // return a.x*b.y - a.y*b.x + a.y*c.x - a.x*c.y + b.x*c.y - b.y*c.x; double area2 = (b.x - a.x) * (c.y - a.y) - (c.x - a.x) * (b.y - a.y); if (area2 < 0) return -1; else if (area2 > 0) return +1; else return 0; } // is a-b-c collinear? public static boolean collinear(Point a, Point b, Point c) { return ccw(a, b, c) == 0; } // is c between a and b? // Reference: O' Rourke p. 32 public static boolean between(Point a, Point b, Point c) { if (ccw(a, b, c) != 0) return false; if (a.x == b.x && a.y == b.y) { return a.x == c.x && a.y == c.y; } else if (a.x != b.x) { // ab not vertical return (a.x <= c.x && c.x <= b.x) || (a.x >= c.x && c.x >= b.x); } else { // ab not horizontal return (a.y <= c.y && c.y <= b.y) || (a.y >= c.y && c.y >= b.y); } } // return string representation of this point public String toString() { return "(" + x + ", " + y + ")"; } // test client public static void main(String[] args) { Point p = new Point(5, 6); StdOut.println("p = " + p); Point q = new Point(2, 2); StdOut.println("q = " + q); StdOut.println("dist(p, q) = " + p.distanceTo(q) + " = " + q.distanceTo(p)); } }