# BipartiteMatchingToMaxflow.java

Below is the syntax highlighted version of BipartiteMatchingToMaxflow.java from §6.5 Reductions.

```/******************************************************************************
*  Compilation:  javac BipartiteMatchingToMaxflow.java
*  Execution:    java BipartiteMatchingToMaxflow V1 V2 E
*  Dependencies: FordFulkerson.java FlowNetwork.java FlowEdge.java
*                BipartiteX.java
*
*  Find a maximum cardinality matching (and minimum cardinality vertex cover)
*  in a bipartite graph. Solve by reducing to maximum flow.
*
*
******************************************************************************/

/**
*  The {@code BipartiteMatchingToMaxflow} class represents a data type for
*  computing a <em>maximum (cardinality) matching</em> and a
*  <em>minimum (cardinality) vertex cover</em> in a bipartite graph.
*  A <em>bipartite graph</em> in a graph whose vertices can be partitioned
*  into two disjoint sets such that every edge has one endpoint in either set.
*  A <em>matching</em> in a graph is a subset of its edges with no common
*  vertices. A <em>maximum matching</em> is a matching with the maximum number
*  of edges.
*  A <em>perfect matching</em> is a matching which matches all vertices in the graph.
*  A <em>vertex cover</em> in a graph is a subset of its vertices such that
*  every edge is incident to at least one vertex. A <em>minimum vertex cover</em>
*  is a vertex cover with the minimum number of vertices.
*  By Konig's theorem, in any biparite
*  graph, the maximum number of edges in matching equals the minimum number
*  of vertices in a vertex cover.
*  The maximum matching problem in <em>nonbipartite</em> graphs is
*  also important, but all known algorithms for this more general problem
*  are substantially more complicated.
*  <p>
*  This implementation reduces the problem to the maxflow-mincut problem.
*  The order of growth of the running time in the worst case is <em>E V</em>,
*  where <em>E</em> is the number of edges and <em>V</em> is the number
*  of vertices in the graph. It uses extra space (not including the graph)
*  proportional to <em>V</em>.
*  <p>
*  See also {@link HopcroftKarp}, which solves the problem in  O(<em>E</em> <em>V</em>^1/2)
*  using the Hopcroft-Karp algorithm and
*  {@link BipartiteMatching}, which solves the problem in
*  O(<em>E V</em>) time using the alternating path algorithm.
*  <p>
*  For additional documentation, see
*  <a href="https://algs4.cs.princeton.edu/65reductions">Section 6.5</a>
*  <i>Algorithms, 4th Edition</i> by Robert Sedgewick and Kevin Wayne.
*
*  @author Robert Sedgewick
*  @author Kevin Wayne
*/
public class BipartiteMatchingToMaxflow {
private static final int UNMATCHED = -1;

private final int V;                 // number of vertices in the graph
private final int cardinality;       // cardinality of max matching / min vertex cover
private int[] mate;                  // mate[v] =  w if v-w is an edge in max matching
//         = -1 if v is not in max matching
private boolean[] inMinVertexCover;  // inMinVertexCover[v] = true iff v is in min vertex cover

/**
* Determines a maximum matching (and a minimum vertex cover)
* in a bipartite graph.
*
* @param  G the bipartite graph
* @throws IllegalArgumentException if {@code G} is not bipartite
*/
public BipartiteMatchingToMaxflow(Graph G) {
BipartiteX bipartite = new BipartiteX(G);
if (!bipartite.isBipartite()) {
throw new IllegalArgumentException("graph is not bipartite");
}

// reduction to maxflow problem
this.V = G.V();
int s = V;
int t = V + 1;
FlowNetwork H = new FlowNetwork(V + 2);
for (int v = 0; v < V; v++) {
for (int w : G.adj(v)) {
if (bipartite.color(v))
H.addEdge(new FlowEdge(v, w, Double.POSITIVE_INFINITY));
else
H.addEdge(new FlowEdge(w, v, Double.POSITIVE_INFINITY));
}
}
for (int v = 0; v < V; v++) {
if (bipartite.color(v))
H.addEdge(new FlowEdge(s, v, 1.0));
else
H.addEdge(new FlowEdge(v, t, 1.0));
}

// solve the maximum flow problem
FordFulkerson maxflow = new FordFulkerson(H, s, t);

// get the cardinality of the maximum matching (guaranteed to be an integer)
cardinality = (int) maxflow.value();

// extract the edges in the maximum matching
mate = new int[V];
for (int v = 0; v < V; v++)
mate[v] = UNMATCHED;
for (int v = 0; v < V; v++) {
for (FlowEdge e : H.adj(v)) {
if (e.from() == v && e.flow() > 0 && e.to() != t) {
int w = e.to();
mate[v] = w;
mate[w] = v;
}
}
}

// also find a min vertex cover
inMinVertexCover = new boolean[V];
for (int v = 0; v < V; v++) {
if (bipartite.color(v) && !maxflow.inCut(v)) inMinVertexCover[v] = true;
if (!bipartite.color(v) && maxflow.inCut(v)) inMinVertexCover[v] = true;
}

assert certifySolution(G);
}

/**
* Returns the vertex to which the specified vertex is matched in
* the maximum matching.
*
* @param  v the vertex
* @return the vertex to which vertex {@code v} is matched in the
*         maximum matching; {@code -1} if the vertex is not matched
* @throws IllegalArgumentException unless {@code 0 <= v < V}
*
*/
public int mate(int v) {
validate(v);
return mate[v];
}

/**
* Returns true if the specified vertex is matched in the maximum matching.
*
* @param  v the vertex
* @return {@code true} if vertex {@code v} is matched in maximum matching;
*         {@code false} otherwise
* @throws IllegalArgumentException unless {@code 0 <= v < V}
*
*/
public boolean isMatched(int v) {
validate(v);
return mate[v] != UNMATCHED;
}

/**
* Returns the number of edges in a maximum matching.
*
* @return the number of edges in a maximum matching
*/
public int size() {
return cardinality;
}

/**
* Returns true if the graph contains a perfect matching.
* That is, the number of edges in the maximum matching is equal to one half
* of the number of vertices in the graph (so that every vertex is matched).
*
* @return {@code true} if the graph contains a perfect matching;
*         {@code false} otherwise
*/
public boolean isPerfect() {
return cardinality * 2 == V;
}

/**
* Returns true if the specified vertex is in the minimum vertex cover.
*
* @param  v the vertex
* @return {@code true} if vertex {@code v} is in the minimum vertex cover;
*         {@code false} otherwise
* @throws IllegalArgumentException unless {@code 0 <= v < V}
*/
public boolean inMinVertexCover(int v) {
validate(v);
return inMinVertexCover[v];
}

private void validate(int v) {
if (v < 0 || v >= V)
throw new IllegalArgumentException("vertex " + v + " is not between 0 and " + (V-1));
}

/**************************************************************************
*
*  The code below is solely for testing correctness of the data type.
*
**************************************************************************/

// check that mate[] and inVertexCover[] define a max matching and min vertex cover, respectively
private boolean certifySolution(Graph G) {

// check that mate(v) = w iff mate(w) = v
for (int v = 0; v < V; v++) {
if (mate(v) == UNMATCHED) continue;
if (mate(mate(v)) != v) return false;
}

// check that size() is consistent with mate()
int matchedVertices = 0;
for (int v = 0; v < V; v++) {
if (mate(v) != UNMATCHED) matchedVertices++;
}
if (2*size() != matchedVertices) return false;

// check that size() is consistent with minVertexCover()
int sizeOfMinVertexCover = 0;
for (int v = 0; v < V; v++)
if (inMinVertexCover(v)) sizeOfMinVertexCover++;
if (size() != sizeOfMinVertexCover) return false;

// check that mate() uses each vertex at most once
boolean[] isMatched = new boolean[V];
for (int v = 0; v < V; v++) {
int w = mate[v];
if (w == UNMATCHED) continue;
if (v == w) return false;
if (v >= w) continue;
if (isMatched[v] || isMatched[w]) return false;
isMatched[v] = true;
isMatched[w] = true;
}

// check that mate() uses only edges that appear in the graph
for (int v = 0; v < V; v++) {
if (mate(v) == UNMATCHED) continue;
boolean isEdge = false;
for (int w : G.adj(v)) {
if (mate(v) == w) isEdge = true;
}
if (!isEdge) return false;
}

// check that inMinVertexCover() is a vertex cover
for (int v = 0; v < V; v++)
for (int w : G.adj(v))
if (!inMinVertexCover(v) && !inMinVertexCover(w)) return false;

return true;
}

/**
* Unit tests the {@code HopcroftKarp} data type.
* Takes three command-line arguments {@code V1}, {@code V2}, and {@code E};
* creates a random bipartite graph with {@code V1} + {@code V2} vertices
* and {@code E} edges; computes a maximum matching and minimum vertex cover;
* and prints the results.
*
* @param args the command-line arguments
*/
public static void main(String[] args) {
int V1 = Integer.parseInt(args);
int V2 = Integer.parseInt(args);
int E  = Integer.parseInt(args);
Graph G = GraphGenerator.bipartite(V1, V2, E);
StdOut.println(G);

BipartiteMatchingToMaxflow matching = new BipartiteMatchingToMaxflow(G);

// print maximum matching
StdOut.printf("Number of edges in max matching        = %d\n", matching.size());
StdOut.printf("Number of vertices in min vertex cover = %d\n", matching.size());
StdOut.printf("Graph has a perfect matching           = %b\n", matching.isPerfect());
StdOut.println();

if (G.V() >= 1000) return;

StdOut.print("Max matching: ");
for (int v = 0; v < G.V(); v++) {
int w = matching.mate(v);
if (matching.isMatched(v) && v < w)  // print each edge only once
StdOut.print(v + "-" + w + " ");
}
StdOut.println();

// print minimum vertex cover
StdOut.print("Min vertex cover: ");
for (int v = 0; v < G.V(); v++)
if (matching.inMinVertexCover(v))
StdOut.print(v + " ");
StdOut.println();
}

}
```

Copyright © 2000–2017, Robert Sedgewick and Kevin Wayne.
Last updated: Fri Oct 20 12:50:46 EDT 2017.