Below is the syntax highlighted version of AssignmentProblemToLP.java
from §6.5 Reductions.
/****************************************************************************** * Compilation: javac AssignmentProblemToLP.java * Execution: java AassignmentProblemToLP n * Dependencies: LinearProgramming.java * * Solve an n-by-n assignment problem (maximum weighted bipartite matching) * by reducing it to linear programming. * * Warning: in practice, use AssignmentProblem.java which runs in N^3 log B * time instead of this version. * * ******************************************************************************/ public class AssignmentProblemToLP { private int n; // number of rows and columns private double[][] weight; // the n-by-n cost matrix private double[] px; // px[i] = dual variable for row i private double[] py; // py[j] = dual variable for col j private int[] xy; // xy[i] = j means i-j is a match private int[] yx; // yx[j] = i means i-j is a match public AssignmentProblemToLP(double[][] weight) { n = weight.length; this.weight = new double[n][n]; for (int i = 0; i < n; i++) for (int j = 0; j < n; j++) this.weight[i][j] = weight[i][j]; double[] c = new double[n*n]; for (int i = 0; i < n; i++) for (int j = 0; j < n; j++) c[i*n+j] = weight[i][j]; // or vice versa? double[] b = new double[2*n]; for (int i = 0; i < 2*n; i++) b[i] = 1.0; // constraint matrix double[][] A = new double[2*n][n*n]; for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) { A[i][i*n+j] = 1.0; } } for (int j = 0; j < n; j++) { for (int i = 0; i < n; i++) { A[j+n][i*n+j] = 1.0; } } LinearProgramming lp = new LinearProgramming(A, b, c); // dual variables double[] y = lp.dual(); px = new double[n]; for (int i = 0; i < n; i++) px[i] = y[i]; py = new double[n]; for (int i = 0; i < n; i++) py[i] = y[i+n]; // primal variables double[] x = lp.primal(); xy = new int[n]; yx = new int[n]; for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) { if (x[i*n+j] == 1.0) { xy[i] = j; yx[j] = i; } } } assert check(); } // reduced cost of i-j private double reducedCost(int i, int j) { return weight[i][j] - px[i] - py[j]; } // total weight of min weight perfect matching public double weight() { double total = 0.0; for (int i = 0; i < n; i++) total += weight[i][xy[i]]; return total; } public int sol(int i) { return xy[i]; } // check that dual variables are feasible private boolean isDualFeasible() { double EPSILON = 1E-10; // check that all edges have >= 0 reduced cost for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) { if (reducedCost(i, j) > EPSILON) { StdOut.println("Dual variables are not feasible"); return false; } } } return true; } // check that primal and dual variables are complementary slack private boolean isComplementarySlack() { double EPSILON = 1E-10; // check that all matched edges have 0-reduced cost for (int i = 0; i < n; i++) { if (reducedCost(i, xy[i]) < -EPSILON) { StdOut.println("Primal and dual variables are not complementary slack"); StdOut.println("Reduced cost of " + i + "-" + xy[i] + " = " + reducedCost(i, xy[i])); return false; } } return true; } // check that primal variables are a perfect matching private boolean isPerfectMatching() { // check that xy[] is a perfect matching boolean[] perm = new boolean[n]; for (int i = 0; i < n; i++) { if (perm[xy[i]]) { StdOut.println("Not a perfect matching"); return false; } perm[xy[i]] = true; } // check that xy[] and yx[] are inverses for (int j = 0; j < n; j++) { if (xy[yx[j]] != j) { StdOut.println("xy[] and yx[] are not inverses"); return false; } } for (int i = 0; i < n; i++) { if (yx[xy[i]] != i) { StdOut.println("xy[] and yx[] are not inverses"); return false; } } return true; } // check optimality conditions private boolean check() { return isPerfectMatching() && isDualFeasible() && isComplementarySlack(); } public static void main(String[] args) { int n = Integer.parseInt(args[0]); double[][] weight = new double[n][n]; for (int i = 0; i < n; i++) for (int j = 0; j < n; j++) weight[i][j] = StdRandom.uniformDouble(0.0, 1.0); AssignmentProblemToLP assignment = new AssignmentProblemToLP(weight); StdOut.println("weight = " + assignment.weight()); for (int i = 0; i < n; i++) StdOut.println(i + "-" + assignment.sol(i)); } }