Below is the syntax highlighted version of AssignmentProblemDense.java
from §6.5 Reductions.
/****************************************************************************** * Compilation: javac AssignmentProblemDense.java * Execution: java AssignmentProblemDense n * Dependencies: DenseDijkstraSP.java AdjMatrixEdgeWeightedDigraph.java DirectedEdge.java * * Solve an n-by-n assignment problem using successive shortest path * algorithm in n^3 time. * * Assumes n-by-n cost matrix is nonnegative. If not, can add positive * constant to all entries. * ******************************************************************************/ public class AssignmentProblemDense { private static final double FLOATING_POINT_EPSILON = 1E-14; private static final int UNMATCHED = -1; private int n; // number of rows and columns private double[][] weight; // the n-by-n cost matrix private double[] px; // px[i] = dual variable for row i private double[] py; // py[j] = dual variable for col j private int[] xy; // xy[i] = j means i-j is a match private int[] yx; // yx[j] = i means i-j is a match public AssignmentProblemDense(double[][] weight) { this.weight = weight.clone(); n = weight.length; // dual variables px = new double[n]; py = new double[n]; // initial matching is empty xy = new int[n]; yx = new int[n]; for (int i = 0; i < n; i++) xy[i] = UNMATCHED; for (int j = 0; j < n; j++) yx[j] = UNMATCHED; // add N edges to matching for (int k = 0; k < n; k++) { StdOut.println(k); assert isDualFeasible(); assert isComplementarySlack(); augment(); } assert check(); } // find shortest augmenting path and upate private void augment() { // build residual graph AdjMatrixEdgeWeightedDigraph G = new AdjMatrixEdgeWeightedDigraph(2*n + 2); int s = 2*n, t = 2*n+1; for (int i = 0; i < n; i++) { if (xy[i] == UNMATCHED) G.addEdge(new DirectedEdge(s, i, 0.0)); } for (int j = 0; j < n; j++) { if (yx[j] == UNMATCHED) G.addEdge(new DirectedEdge(n+j, t, py[j])); } for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) { if (xy[i] == j) G.addEdge(new DirectedEdge(n+j, i, 0.0)); else G.addEdge(new DirectedEdge(i, n+j, reducedCost(i, j))); } } // compute shortest path from s to every other vertex DenseDijkstraSP spt = new DenseDijkstraSP(G, s); // augment along alternating path for (DirectedEdge e : spt.pathTo(t)) { int v = e.from(), w = e.to() - n; if (v < n) { xy[v] = w; yx[w] = v; } } // update dual variables for (int i = 0; i < n; i++) px[i] += spt.distTo(i); for (int j = 0; j < n; j++) py[j] += spt.distTo(n+j); } // reduced cost of i-j // (subtracting off minWeight reweights all weights to be non-negative) private double reducedCost(int i, int j) { double reducedCost = weight[i][j] + px[i] - py[j]; // to avoid issues with floating-point precision double magnitude = Math.abs(weight[i][j]) + Math.abs(px[i]) + Math.abs(py[j]); if (Math.abs(reducedCost) <= FLOATING_POINT_EPSILON * magnitude) return 0.0; assert reducedCost >= 0.0; return reducedCost; } // total weight of min weight perfect matching public double weight() { double total = 0.0; for (int i = 0; i < n; i++) { if (xy[i] != UNMATCHED) total += weight[i][xy[i]]; } return total; } public int sol(int i) { return xy[i]; } // check that dual variables are feasible private boolean isDualFeasible() { // check that all edges have >= 0 reduced cost for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) { if (reducedCost(i, j) < 0) { StdOut.println("Dual variables are not feasible"); return false; } } } return true; } // check that primal and dual variables are complementary slack private boolean isComplementarySlack() { // check that all matched edges have 0-reduced cost for (int i = 0; i < n; i++) { if ((xy[i] != UNMATCHED) && (reducedCost(i, xy[i]) != 0)) { StdOut.println("Primal and dual variables are not complementary slack"); return false; } } return true; } // check that primal variables are a perfect matching private boolean isPerfectMatching() { // check that xy[] is a perfect matching boolean[] perm = new boolean[n]; for (int i = 0; i < n; i++) { if (perm[xy[i]]) { StdOut.println("Not a perfect matching"); return false; } perm[xy[i]] = true; } // check that xy[] and yx[] are inverses for (int j = 0; j < n; j++) { if (xy[yx[j]] != j) { StdOut.println("xy[] and yx[] are not inverses"); return false; } } for (int i = 0; i < n; i++) { if (yx[xy[i]] != i) { StdOut.println("xy[] and yx[] are not inverses"); return false; } } return true; } // check optimality conditions private boolean check() { return isPerfectMatching() && isDualFeasible() && isComplementarySlack(); } public static void main(String[] args) { int n = Integer.parseInt(args[0]); double[][] weight = new double[n][n]; for (int i = 0; i < n; i++) for (int j = 0; j < n; j++) weight[i][j] = StdRandom.uniform(); AssignmentProblemDense assignment = new AssignmentProblemDense(weight); StdOut.println("weight = " + assignment.weight()); for (int i = 0; i < n; i++) StdOut.println(i + "-" + assignment.sol(i)); } }