
875 Suffix arrays

Suffix arrays Efficient algorithms for string processing play a critical role in com-
mercial applications and in scientific computing. From the countless strings that define
web pages that are searched by billions of users to the extensive genomic databases that
scientists are studying to unlock the secret of life, computing applications of the 21st
century are increasingly string-based. As usual, some classic algorithms are effective,
but remarkable new algorithms are being developed. Next, we describe a data structure
and an API that support some of these algorithms. We begin by describing a typical
(and a classic) string-processing problem.

Longest repeated substring. What is the longest substring that appears at least
twice in a given string? For example, the longest repeated substring in the string
"to be or not to be" is the string "to be". Think briefly about how you might solve
it. Could you find the longest repeated substring in a string that has millions of char-
acters? This problem is simple to state and has many important applications, including
data compression, cryptography, and computer-assisted music analysis. For example,
a standard technique used in the development of large software systems is refactoring
code. Programmers often put together new programs by cutting and pasting code from
old programs. In a large program built over a long period of time, replacing duplicate
code by function calls to a single copy of the code can make the program much easier
to understand and maintain. This improvement can be accomplished by finding long
repeated substrings in the program. Another application is found in computational
biology. Are substantial identical fragments to be found within a given genome? Again,
the basic computational problem underlying this question is to find the longest repeat-
ed substring in a string. Scientists are typically interested in more detailed questions
(indeed, the nature of the repeated substrings is precisely what scientists seek to under-
stand), but such questions are certainly no easier to answer than the basic question of
finding the longest repeated substring.

Brute-force solution. As a warmup, consider the following simple task: given two
strings, find their longest common prefix (the longest substring that is a prefix of both
strings). For example, the longest
common prefix of acctgttaac and
accgttaa is acc. The code at right
is a useful starting point for address-
ing more complicated tasks: it takes
time proportional to the length of
the match. Now, how do we find the
longest repeated substring in a given
string? With lcp(), the following

private static int lcp(String s, String t)
{
 int n = Math.min(s.length(), t.length());
 for (int i = 0; i < n; i++)
 if (s.charAt(i) != t.charAt(i)) return i;
 return n;
}

Longest common prefix of two strings

Algs4.indb 875 11/10/17 3:13 PM

876 CONTEXT

brute-force solution immediately suggests itself: we compare the substring starting at
each string position i with the substring starting at each other starting position j, keep-
ing track of the longest match found. This code is not useful for long strings, because
its running time is at least quadratic in the length of the string: the number of different
pairs i and j is n (n!1) * 2, so the number of calls on lcp() for this approach would
be ~n 2/2. Using this solution for a genomic sequence with millions of characters would
require trillions of lcp() calls, which is infeasible.

Suffix sort solution. The following clever approach, which takes advantage of sort-
ing in an unexpected way, is an effective way to find the longest repeated substring,
even in a huge string: we make an array of the n
suffixes of s (the substrings starting at each po-
sition and going to the end), and then we sort
this array. The key to the algorithm’s correctness
is that every substring appears somewhere as a
prefix of one of the suffixes in the array. After
sorting, the longest repeated substrings will ap-
pear in adjacent positions in the array. Thus, we
can make a single pass through the sorted array,
keeping track of the longest matching prefixes
between adjacent strings. The key to the algo-
rithm’s efficiency is to form the n suffixes im-
plicitly (storing only the original string and the
index of the first character in each suffix) instead
of explicitly (since that would require quadratic
time and space). This suffix sorting approach is
significantly more efficient than the brute-force
method, but before implementing and analyz-
ing it, we consider another application of suffix
sorting.

Computing the LRS by sorting suffixes

A A C A A G T T T A C A A G C
A C A A G T T T A C A A G C
C A A G T T T A C A A G C
A A G T T T A C A A G C
A G T T T A C A A G C
G T T T A C A A G C
T T T A C A A G C
T T A C A A G C
T A C A A G C
A C A A G C
C A A G C
A A G C
A G C
G C
C

A A C A A G T T T A C A A G C
A A G C
A A G T T T A C A A G C
A C A A G C
A C A A G T T T A C A A G C
A G C
A G T T T A C A A G C
C
C A A G C
C A A G T T T A C A A G C
G C
G T T T A C A A G C
T A C A A G C
T T A C A A G C
T T T A C A A G C

suffixes

input string

sorted suffixes

0 1 2 3 4 5 6 7 8 9

A A C A A G T T T A C A A G C
10111213

longest repeated substring

A A C A A G T T T A C A A G C
91

14

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14

0
11
3
9
1
12
4
14
10
2
13
5
8
7
6

Algs4.indb 876 11/10/17 3:13 PM

877 Suffix arrays

Indexing a string. When you are trying to find a particular substring within a large
text—for example, while working in a text editor or within a page you are viewing with
a browser—you are doing a substring search, the problem we considered in Section 5.3.
For that problem, we assume the text to be relatively large and focus on preprocessing
the substring, with the goal of being able to efficiently find that substring in any given
text. When you type search keys into your web browser, you are doing a search with
string keys, the subject of Section 5.2. Your search engine must precompute an index,
since it cannot afford to scan all the pages in the web for your keys. As we discussed
in Section 3.5 (see FileIndex on page 501), this would ideally be an inverted index
associating each possible search string with all web pages that contain it—a symbol
table where each entry is a string key
and each value is a set of pointers
(each pointer giving the information
necessary to locate an occurrence of
the key on the web—perhaps a URL
that names a web page and an integer
offset within that page). In practice,
such a symbol table would be far too
big, so your search engine uses vari-
ous sophisticated algorithms to re-
duce its size. One approach is to rank
web pages by importance (perhaps
using an algorithm like the PageRank
algorithm that we discussed on page
502) and work only with highly-
ranked pages, not all pages. Another
approach to cutting down on the size
of a symbol table to support search
with string keys is to associate URLs
with words (substrings delimited by
whitespace) as keys in the precomputed index. Then, when you search for a word, the
search engine can use the index to find the (important) pages containing your search
keys (words) and then use substring search within each page to find them. But with
this approach, if the text were to contain "everything" and you were to search for
"thing", you would not find it. For some applications, it is worthwhile to build an index
to help find any substring within a given text. Doing so might be justified for a linguis-
tic study of an important piece of literature, for a genomic sequence that might be an
object of study for many scientists, or just for a widely accessed web page. Again, ideally,

Idealized view of a typical web search

key

symbol-table search with string keys:
find the pages containing the key

substring search:
find the key in the page

value

 ... it
was the best
deal I could
get ...

... it was the
best kiss I’ve
ever had ...

 ... it was
the best of
times, it was
the worst of
times ...

it was the best

Algs4.indb 877 11/10/17 3:13 PM

878 CONTEXT

the index would associate all possible sub-
strings of the text string with each position
where it occurs in the text string, as depicted
at right. The basic problem with this ideal is
that the number of possible substrings is too
large to have a symbol-table entry for each
of them (an n-character text has n (n+1) * 2
substrings). The table for the example at
right would need entries for b, be, bes, best,
best o, best of, e, es, est, est o, est of,
s, st, st o, st of, t, t o, t of, o, of, and
many, many other substrings. Again, we can use a suffix sort to address this problem in
a manner analogous to our first symbol-table implementation using binary search, in
Section 3.1. We consider each of the n suffixes to be keys, create a sorted array of our
keys (the suffixes), and use binary search to search in that array, comparing the search
key with each suffix.

it was the best of times it was the
t was the best of times it was the
 was the best of times it was the
was the best of times it was the
as the best of times it was the
s the best of times it was the
 the best of times it was the
the best of times it was the
he best of times it was the
e best of times it was the
 best of times it was the
best of times it was the
est of times it was the
st of times it was the
t of times it was the
 of times it was the
of times it was the
f times it was the
 times it was the
times it was the
imes it was the
mes it was the
es it was the
s it was the
 it was the
it was the
t was the
 was the
was the
as the
s the
 the
the
he
e

 0 10 0 best of times it was the
 1 24 1 it was the
 2 15 1 of times it was the
 3 31 1 the
 4 6 4 the best of times it was the
 5 18 2 times it was the
 6 27 1 was the
 7 2 8 was the best of times it was the
 8 29 0 as the
 9 4 6 as the best of times it was the
 10 11 0 best of times it was the
 11 34 0 e
 12 9 1 e best of times it was the
 13 22 1 es it was the
 14 12 2 est of times it was the
 15 17 0 f times it was the
 16 33 0 he
 17 8 2 he best of times it was the
 18 20 0 imes it was the
 19 25 1 it was the
 20 0 10 it was the best of times it was the
 21 21 0 mes it was the
 22 16 0 of times it was the
 23 23 0 s it was the
 24 30 2 s the
 25 5 5 s the best of times it was the
 26 13 1 st of times it was the
 27 14 0 t of times it was the
 28 26 2 t was the
 29 1 9 t was the best of times it was the
 30 32 1 the
 31 7 3 the best of times it was the
 32 19 1 times it was the
 33 28 0 was the
 34 3 7 was the best of times it was the

Binary search in a suffix array

suffixes sorted suffix array

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

select(9)

index(9)

lcp(20)

rank("th")

i index(i) lcp(i)

intervals containing
"th" found by rank()
during binary search

Idealized view of a text-string index

key value
 ...
it was the
best of times,
it was the
worst of times
it was the age
of wisdom
it was the age
of foolishness
it was the
epoch of
belief
 ...

best of times

it was

Algs4.indb 878 11/10/17 3:13 PM

879 Suffix arrays

API and client code. To support client code to solve these two problems, we artic-
ulate the API shown below. It includes a constructor; a length() method; methods
select() and index(), which give the string and index of the suffix of a given rank in
the sorted list of suffixes; a method lcp() that gives the length of the longest common
prefix of each suffix and the one preceding it in the sorted list; and a method rank()
that gives the number of suffixes less than the given key (just as we have been using
since we first examined binary search in Chapter 1). We use the term suffix array to
describe the abstraction of a sorted list of suffix strings, without committing to use an
array of strings as the underlying data structure.

public class SuffixArray

SuffixArray(String text) build suffix array for text

int length() length of text

String select(int i) ith in the suffix array (i between 0 and n-1)
int index(int i) index of select(i) (i between 0 and n-1)

int lcp(int i)
length of longest common prefix of select(i)
and select(i-1) (i between 1 and n-1)

int rank(String key) number of suffixes less than key
Suffix array API

In the example on the facing page, select(9) is "as the best of times...", index(9)
is 4, lcp(20) is 10 because "it was the best of times..." and "it was the"
have the common prefix "it was the" which is of length 10, and rank("th") is 30.
Note also that the select(rank(key)) is the first possible suffix in the sorted suffix
list that has key as prefix and that all other occurrences of key in the text immediately
follow (see the figure on the opposite page). With this API, the client code on the next
two pages is immediate. LongestRepeatedSubstring (page 880) finds the longest re-
peated substring in the text on standard input by building a suffix array and then scan-
ning through the sorted suffixes to find the maximum lcp() value. KWIC (page 881)
builds a suffix array for the text named as command-line argument, takes queries from
standard input, and prints all occurrences of each query in the text (including a speci-
fied number of characters before and after to give context). The name KWIC stands
for keyword-in-context search, a term dating at least to the 1960s. The simplicity and
efficiency of this client code for these typical string-processing applications is remark-
able, and testimony to the importance of careful API design (and the power of a simple
but ingenious idea).

Algs4.indb 879 11/10/17 3:13 PM

880 CONTEXT

% more tinyTale.txt
it was the best of times it was the worst of times
it was the age of wisdom it was the age of foolishness
it was the epoch of belief it was the epoch of incredulity
it was the season of light it was the season of darkness
it was the spring of hope it was the winter of despair

% java LongestRepeatedSubstring < tinyTale.txt
'st of times it was the '

% java LongestRepeatedSubstring < mobyDick.txt
',- Such a funny, sporty, gamy, jesty, joky, hoky-poky lad, is the Ocean, oh! Th'

public class LongestRepeatedSubstring
{

 public static String lrs(String text)
 {
 int n = text.length();
 SuffixArray sa = new SuffixArray(text);
 String lrs = “”;
 for (int i = 1; i < n; i++)
 {
 int length = sa.lcp(i);
 if (length > lrs.length())
 lrs = text.substring(sa.index(i), sa.index(i) + length);
 }
 return lrs;
 }

 public static void main(String[] args)
 {
 String text = StdIn.readAll().replaceAll("\\s+", " ");
 StdOut.println(“'” + lrs(text) + “'”);
 }
}

Longest repeated substring client

Algs4.indb 880 11/10/17 3:13 PM

881 Suffix arrays

public class KWIC
{
 public static void main(String[] args)
 {
 In in = new In(args[0]);
 int context = Integer.parseInt(args[1]);

 String text = in.readAll().replaceAll("\\s+", " ");
 int n = text.length();
 SuffixArray sa = new SuffixArray(text);

 while (StdIn.hasNextLine())
 {
 String query = StdIn.readLine();
 for (int i = sa.rank(query); i < n; i++)
 {
 // Check if sorted suffix i is a match.
 int from1 = sa.index(i);
 int to1 = Math.min(n, sa.index(i) + query.length());
 if (!query.equals(text.substring(from1, to1))) break;

 // Print context surrounding sorted suffix i.
 int from2 = Math.max(0, sa.index(i) - context);
 int to2 = Math.min(n, sa.index(i) + context + query.length());
 StdOut.println(text.substring(from2, to2));
 }
 StdOut.println();
 }
 }
}

Keyword-in-context indexing client

% java KWIC tale.txt 15
search
o st giless to search for contraband
her unavailing search for your fathe
le and gone in search of her husband
t provinces in search of impoverishe
 dispersing in search of other carri
n that bed and search the straw hold

better thing
t is a far far better thing that i do than
 some sense of better things else forgotte
was capable of better things mr carton ent

Algs4.indb 881 11/10/17 3:13 PM

882 CONTEXT

Implementation. The code on the facing page is an elementary implementation of the
SuffixArray API. The key to the implementation is a nested class Suffix that repre-
sents a suffix of a text string. A Suffix has two instance variables: a String reference
to the text string and an int index of its first character. It provides four utility meth-
ods: length() returns the length of the suffix; charAt(i) returns the ith character in
the suffix; toString() returns a string representation of the suffix; and compareTo()
compares two suffixes, for use in sorting. Using this nested class, it is straightforward
to complete the implementation. The constructor builds an array of Suffix objects
and sorts them, so index(i) just returns the index associated with suffixes[i]. The
implementations of length() and select() are also one-liners. The implementation
of lcp() is similar to the lcp() on page 875, and rank() is virtually the same as our
implementation of binary search for symbol tables, on page 381. Again, the simplicity
and elegance of this implementation should not mask the fact that it is a sophisticated
algorithm that enables the solution of important problems like the longest repeated
substring problem that would otherwise seem to be infeasible.

Performance. The efficiency of our suffix sorting implementation depends on the fact
that we form the suffixes implicitly—each suffix is represented by a reference to the text
string and the index of its first character. Thus, the space to store the array of suffixes
is linear in the length of the text string. This point is a bit counterintuitive because the
total number of characters in the n suffixes is ~n 2/2, a quadratic function of the length
of the string. Moreover, that quadratic factor gives one pause when considering the cost
of sorting the array of suffixes. It is very important to bear in mind that this approach
is effective for long strings because of our implicit representation for suffixes: when we
exchange two suffixes, we are exchanging only references, not the whole suffixes. Now,

the cost of comparing
two suffixes may be pro-
portional to the length
of the suffixes in the case
when their common pre-
fix is very long, but most
comparisons in typical
applications involve only
a few characters. If so,
the running time of the
suffix sort is linearithmic.

public int compareTo(Suffix that)
{
 if (this == that) return 0;
 int n = Math.min(this.length(), that.length());
 for (int i = 0; i < n; i++)
 {
 if (this.charAt(i) < that.charAt(i)) return -1;
 if (this.charAt(i) > that.charAt(i)) return +1;
 }
 return this.length() - that.length();

}

Comparing two suffixes

Algs4.indb 882 11/10/17 3:13 PM

883 Suffix arrays

ALGORITHM 6.2 Suffix array (elementary implementation)

import java.util.Arrays;

public class SuffixArray
{
 private Suffix[] suffixes; // array of suffixes

 public SuffixArray(String text)
 {
 int n = text.length();
 this.suffixes = new Suffix[n];
 for (int i = 0; i < n; i++)
 suffixes[i] = new Suffix(text, i);
 Arrays.sort(suffixes);
 }

 private static class Suffix implements Comparable<Suffix>
 {
 private final String text; // reference to text string
 private final int index; // index of suffix's first character

 private Suffix(String text, int index)
 {
 this.text = text;
 this.index = index;
 }

 private int length() { return text.length() - index; }
 private char charAt(int i) { return text.charAt(index + i); }
 public String toString() { return text.substring(index); }
 public int compareTo(Suffix that) // See page 882.
 }

 public int index(int i) { return suffixes[i].index; }
 public int length() { return suffixes.length; }
 public String select(int i) { return suffixes[i].toString(); }

 public int lcp(int i) // See Exercise 6.28.
 public int rank(String key) // See Exercise 6.28.
}

This implementation of our SuffixArray API depends for its efficiency on the fact that the suffixes
are represented implicitly (see text), using the nested class Suffix.

Algs4.indb 883 11/10/17 3:13 PM

884 CONTEXT

For example, in many applications, it is reasonable to use a random string model:

Proposition C. Using 3-way string quicksort, we can build a suffix array from a
random string of length n with space proportional to n and ~ 2n ln n character
compares, on the average.

Discussion: The space bound is immediate, but the time bound follows from a de-
tailed and difficult research result by P. Jacquet and W. Szpankowski, which implies
that the cost of sorting the suffixes is asymptotically the same as the cost of sorting
n random strings (see Proposition E on page 723).

Improved implementations. Our elementary implementation of SuffixArray (Al-
gorithm 6.2) has poor worst-case performance. For example, if all the characters are
equal, the sort examines every character in each suffix and thus takes quadratic time.
For strings of the type we have been using as examples, such as genomic sequences or
natural-language text, this is not likely to be problematic, but the algorithm can be slow
for texts with long runs of identical characters. Another way of looking at the problem
is to observe that the cost of finding the lon-
gest repeated substring is (at least) quadratic in
the length of the longest repeated substring be-
cause all of the prefixes of the repeat need to be
checked (see the diagram at right). This is not
a problem for a text such as A Tale of Two Cities,
where the longest repeated substring

"s dropped because it would have
 been a bad thing for me in a
 worldly point of view i"

has just 84 characters, but it is a serious prob-
lem for genomic data, where long repeated
substrings are not unusual. How can this qua-
dratic behavior for repeat searching be avoid-
ed? Remarkably, research by P. Weiner in 1973
showed that it is possible to solve the longest
repeated substring problem in guaranteed linear
time. Weiner’s algorithm was based on build-
ing a suffix tree data structure (essentially a LRS cost is quadratic in repeat length

A C A A G
 C A A G
 A A G
 A G
 G

input string

suffixes of longest repeated substring (m = 5)

A A C A A G T T T A C A A G C
A A G C
A A G T T T A C A A G C
A C A A G C
A C A A G T T T A C A A G C
A G C
A G T T T A C A A G C
C
C A A G C
C A A G T T T A C A A G C
G C
G T T T A C A A G C
T A C A A G C
T T A C A A G C
T T T A C A A G C

sorted suffixes of input

A A C A A G T T T A C A A G C

all appear at least
twice as a prefix of
a suffix string

comparison cost is at least
 1 + 2 + . . . + m ~ m 2/2

3

5

2

4

1

Algs4.indb 884 11/10/17 3:13 PM

885 Suffix arrays

trie for suffixes). With multiple pointers per character, suffix trees consume too much
space for many practical problems, which led to the development of suffix arrays. In the
1990s, U. Manber and E. Myers presented a linearithmic algorithm for building suffix
arrays directly and a method that does preprocessing at the same time as the suffix sort
to support constant-time lcp(). Several linear-time suffix sorting algorithms have been
developed since. With a bit more work, the Manber–Meyers implementation can also
support a two-argument lcp() that finds the longest common prefix of two given suf-
fixes that are not necessarily adjacent in guaranteed constant time, again a remarkable
improvement over the straightforward implementation. These results are quite surpris-
ing, as they achieve efficiencies quite beyond what you might have expected.

Proposition D. With suffix arrays, we can solve both the suffix sorting and longest
repeated substring problems in linear time.

Proof: The remarkable algorithms for these tasks are just beyond our scope, but
you can find on the booksite code that implements the SuffixArray constructor
in linear time and lcp() queries in constant time.

A SuffixArray implementation based on these ideas supports efficient solutions of nu-
merous string-processing problems, with simple client code, as in our LongestRepeated-
Substring and KWIC examples.

Suffix arrays are the culmination of decades of research that began with the devel-
opment of tries for KWIC indices in the 1960s. The algorithms that we have discussed
were worked out by many researchers over several decades in the context of solving
practical problems ranging from putting the Oxford English Dictionary online to the
development of the first web search engines to sequencing the human genome. This
story certainly helps put the importance of algorithm design and analysis in context.

Algs4.indb 885 11/10/17 3:13 PM

