Below is the syntax highlighted version of Manacher.java
from §5.3 Substring Search.
/****************************************************************************** * Compilation: javac Manacher.java * Execution: java Manacher text * Dependencies: StdOut.java * * Computes the longest palindromic substring in linear time * using Manacher's algorithm. * * Credits: The code is lifted from the following excellent reference * http://www.leetcode.com/2011/11/longest-palindromic-substring-part-ii.html * ******************************************************************************/ public class Manacher { private int[] p; // p[i] = length of longest palindromic substring of t, centered at i private String s; // original string private char[] t; // transformed string public Manacher(String s) { this.s = s; preprocess(); p = new int[t.length]; int center = 0, right = 0; for (int i = 1; i < t.length-1; i++) { int mirror = 2*center - i; if (right > i) p[i] = Math.min(right - i, p[mirror]); // attempt to expand palindrome centered at i while (t[i + (1 + p[i])] == t[i - (1 + p[i])]) p[i]++; // if palindrome centered at i expands past right, // adjust center based on expanded palindrome. if (i + p[i] > right) { center = i; right = i + p[i]; } } } // Transform s into t. // For example, if s = "abba", then t = "$#a#b#b#a#@" // the # are interleaved to avoid even/odd-length palindromes uniformly // $ and @ are prepended and appended to each end to avoid bounds checking private void preprocess() { t = new char[s.length()*2 + 3]; t[0] = '$'; t[s.length()*2 + 2] = '@'; for (int i = 0; i < s.length(); i++) { t[2*i + 1] = '#'; t[2*i + 2] = s.charAt(i); } t[s.length()*2 + 1] = '#'; } // longest palindromic substring public String longestPalindromicSubstring() { int length = 0; // length of longest palindromic substring int center = 0; // center of longest palindromic substring for (int i = 1; i < p.length-1; i++) { if (p[i] > length) { length = p[i]; center = i; } } return s.substring((center - 1 - length) / 2, (center - 1 + length) / 2); } // longest palindromic substring centered at index i/2 public String longestPalindromicSubstring(int i) { int length = p[i + 2]; int center = i + 2; return s.substring((center - 1 - length) / 2, (center - 1 + length) / 2); } // test client public static void main(String[] args) { String s = args[0]; Manacher manacher = new Manacher(s); StdOut.println(manacher.longestPalindromicSubstring()); for (int i = 0; i < 2*s.length(); i++) StdOut.println(i + ": " + manacher.longestPalindromicSubstring(i)); } }