Below is the syntax highlighted version of MemoryOfEdgeWeightedDigraph.java
from §4.4 Shortest Paths.
/****************************************************************************** * Compilation: javac -cp .:jama.jar:classmexer.jar MemoryOfEdgeWeightedDigraph.java * Execution: java -cp .:jama.jar:classmexer.jar -XX:-UseCompressedOops -javaagent:classmexer.jar MemoryOfEdgeWeightedDigraph * Dependencies: EdgeWeightedDigraph.java MultipleLinearRegression.java StdOut.java classmexer.jar jama.jar * * % java -cp .:jama.jar:classmexer.jar -XX:-UseCompressedOops -javaagent:classmexer.jar MemoryOfEdgeWeightedDigraph * memory of an EdgeWeightedDigraph with V vertices and E edges: * 56.00 + 40.00 V + 72.00 E bytes (R^2 = 1.000) * ******************************************************************************/ import com.javamex.classmexer.MemoryUtil; public class MemoryOfEdgeWeightedDigraph { public static void main(String[] args) { DirectedEdge e = new DirectedEdge(123456, 654321, 1.0); StdOut.println("size of DirectedEdge = " + MemoryUtil.memoryUsageOf(e) + " bytes"); int n = 40; int[] V = new int[n]; int[] E = new int[n]; // build random graphs and compute memory usage long[] memory = new long[n]; for (int i = 0; i < n; i++) { V[i] = 2*StdRandom.uniformInt(500); // vertices E[i] = V[i] * StdRandom.uniformInt(10); // edges EdgeWeightedDigraph G = new EdgeWeightedDigraph(V[i]); for (int j = 0; j < E[i]; j++) { int v = StdRandom.uniformInt(V[i]); int w = StdRandom.uniformInt(V[i]); double weight = StdRandom.uniformDouble(0.0, 1.0); G.addEdge(new DirectedEdge(v, w, weight)); } memory[i] = MemoryUtil.deepMemoryUsageOf(G); } // build multiple linear regression coefficients double[] y = new double[n]; for (int i = 0; i < n; i++) { y[i] = memory[i]; } double[][] x = new double[n][3]; for (int i = 0; i < n; i++) { x[i][0] = 1.0; x[i][1] = V[i]; x[i][2] = E[i]; } MultipleLinearRegression regression = new MultipleLinearRegression(x, y); StdOut.println("memory of an EdgeWeightedDigraph with V vertices and E edges:"); StdOut.printf("%.2f + %.2f V + %.2f E bytes (R^2 = %.3f)\n", regression.beta(0), regression.beta(1), regression.beta(2), regression.R2()); } }