Below is the syntax highlighted version of LazyDijkstraSP.java
from §4.4 Shortest Paths.
/****************************************************************************** * Compilation: javac LazyDijkstraSP.java * Execution: java LazyDijkstraSP V E * Dependencies: EdgeWeightedDigraph.java MinPQ.java Stack.java DirectedEdge.java * * Dijkstra's algorithm. Computes the shortest path tree. * Assumes all weights are non-negative. * * % java LazyDijkstraSP 10 30 * * % java LazyDijkstraSP < digraph6.txt * * The disadvantage of this approach is that the number of items on the * priority queue can grow to be proportional to E instead of V. * * The advantage is that it uses a MinPQ instead of an IndexMinPQ. * ******************************************************************************/ import java.util.Comparator; public class LazyDijkstraSP { private boolean[] marked; // has vertex v been relaxed? private double[] distTo; // distTo[v] = length of shortest s->v path private DirectedEdge[] edgeTo; // edgeTo[v] = last edge on shortest s->v path private MinPQ<DirectedEdge> pq; // PQ of fringe edges private class ByDistanceFromSource implements Comparator<DirectedEdge> { public int compare(DirectedEdge e, DirectedEdge f) { double dist1 = distTo[e.from()] + e.weight(); double dist2 = distTo[f.from()] + f.weight(); return Double.compare(dist1, dist2); } } // single-source shortest path problem from s public LazyDijkstraSP(EdgeWeightedDigraph G, int s) { for (DirectedEdge e : G.edges()) { if (e.weight() < 0) throw new IllegalArgumentException("edge " + e + " has negative weight"); } pq = new MinPQ<DirectedEdge>(new ByDistanceFromSource()); marked = new boolean[G.V()]; edgeTo = new DirectedEdge[G.V()]; distTo = new double[G.V()]; // initialize for (int v = 0; v < G.V(); v++) distTo[v] = Double.POSITIVE_INFINITY; distTo[s] = 0.0; relax(G, s); // run Dijkstra's algorithm while (!pq.isEmpty()) { DirectedEdge e = pq.delMin(); int v = e.from(), w = e.to(); if (!marked[w]) relax(G, w); // lazy, so w might already have been relaxed } // check optimality conditions assert check(G, s); } // relax vertex v private void relax(EdgeWeightedDigraph G, int v) { marked[v] = true; for (DirectedEdge e : G.adj(v)) { int w = e.to(); if (distTo[w] > distTo[v] + e.weight()) { distTo[w] = distTo[v] + e.weight(); edgeTo[w] = e; pq.insert(e); } } } // length of shortest path from s to v, infinity if unreachable public double distTo(int v) { return distTo[v]; } // is there a path from s to v? public boolean hasPathTo(int v) { return marked[v]; } // return view of shortest path from s to v, null if no such path public Iterable<DirectedEdge> pathTo(int v) { if (!hasPathTo(v)) return null; Stack<DirectedEdge> path = new Stack<DirectedEdge>(); for (DirectedEdge e = edgeTo[v]; e != null; e = edgeTo[e.from()]) { path.push(e); } return path; } // check optimality conditions: either // (i) for all edges e: distTo[e.to()] <= distTo[e.from()] + e.weight() // (ii) for all edge e on the SPT: distTo[e.to()] == distTo[e.from()] + e.weight() private boolean check(EdgeWeightedDigraph G, int s) { // all edge weights are non-negative for (DirectedEdge e : G.edges()) { if (e.weight() < 0) { System.err.println("negative edge weight detected"); return false; } } // check that distTo[v] and edgeTo[v] are consistent if (distTo[s] != 0.0 || edgeTo[s] != null) { System.err.println("distTo[s] and edgeTo[s] inconsistent"); return false; } for (int v = 0; v < G.V(); v++) { if (v == s) continue; if (edgeTo[v] == null && distTo[v] != Double.POSITIVE_INFINITY) { System.err.println("distTo[s] and edgeTo[s] inconsistent"); return false; } } // check that all edges e = v->w satisfy dist[w] <= dist[v] + e.weight() for (int v = 0; v < G.V(); v++) { for (DirectedEdge e : G.adj(v)) { int w = e.to(); if (distTo[v] + e.weight() < distTo[w]) { System.err.println("edge " + e + " not relaxed"); return false; } } } // check that all edges e = v->w on SPT satisfy dist[w] == dist[v] + e.weight() for (int w = 0; w < G.V(); w++) { if (edgeTo[w] == null) continue; DirectedEdge e = edgeTo[w]; int v = e.from(); if (w != e.to()) return false; if (distTo[v] + e.weight() != distTo[w]) { System.err.println("edge " + e + " on shortest path not tight"); return false; } } StdOut.println("Satisfies optimality conditions"); StdOut.println(); return true; } public static void main(String[] args) { EdgeWeightedDigraph G = new EdgeWeightedDigraph(new In()); // print graph StdOut.println("Graph"); StdOut.println("--------------"); StdOut.println(G); // run Dijksra's algorithm from vertex 0 int s = 0; LazyDijkstraSP spt = new LazyDijkstraSP(G, s); StdOut.println(); StdOut.println("Shortest paths from " + s); StdOut.println("------------------------"); for (int v = 0; v < G.V(); v++) { if (spt.hasPathTo(v)) { StdOut.printf("%d to %d (%.2f) ", s, v, spt.distTo(v)); for (DirectedEdge e : spt.pathTo(v)) { StdOut.print(e + " "); } StdOut.println(); } else { StdOut.printf("%d to %d no path\n", s, v); } } } }