Below is the syntax highlighted version of TopologicalX.java
from §4.2 Directed Graphs.
/****************************************************************************** * Compilation: javac TopologicalX.java * Execution: java TopologicalX V E F * Dependencies: Queue.java Digraph.java * * Compute topological ordering of a DAG using queue-based algorithm. * Runs in O(E + V) time. * ******************************************************************************/ /** * The {@code TopologicalX} class represents a data type for * determining a topological order of a <em>directed acyclic graph</em> (DAG). * A digraph has a topological order if and only if it is a DAG. * The <em>hasOrder</em> operation determines whether the digraph has * a topological order, and if so, the <em>order</em> operation * returns one. * <p> * This implementation uses a nonrecursive, queue-based algorithm. * The constructor takes Θ(<em>V</em> + <em>E</em>) time in the worst * case, where <em>V</em> is the number of vertices and <em>E</em> * is the number of edges. * Each instance method takes Θ(1) time. * It uses Θ(<em>V</em>) extra space (not including the digraph). * <p> * See {@link DirectedCycle}, {@link DirectedCycleX}, and * {@link EdgeWeightedDirectedCycle} to compute a * directed cycle if the digraph is not a DAG. * See {@link Topological} for a recursive version that uses depth-first search. * <p> * For additional documentation, * see <a href="https://algs4.cs.princeton.edu/42digraph">Section 4.2</a> of * <i>Algorithms, 4th Edition</i> by Robert Sedgewick and Kevin Wayne. * * @author Robert Sedgewick * @author Kevin Wayne */ public class TopologicalX { private Queue<Integer> order; // vertices in topological order private int[] ranks; // ranks[v] = order where vertex v appears in order /** * Determines whether the digraph {@code G} has a topological order and, if so, * finds such a topological order. * @param G the digraph */ public TopologicalX(Digraph G) { // indegrees of remaining vertices int[] indegree = new int[G.V()]; for (int v = 0; v < G.V(); v++) { indegree[v] = G.indegree(v); } // initialize ranks = new int[G.V()]; order = new Queue<Integer>(); int count = 0; // initialize queue to contain all vertices with indegree = 0 Queue<Integer> queue = new Queue<Integer>(); for (int v = 0; v < G.V(); v++) if (indegree[v] == 0) queue.enqueue(v); while (!queue.isEmpty()) { int v = queue.dequeue(); order.enqueue(v); ranks[v] = count++; for (int w : G.adj(v)) { indegree[w]--; if (indegree[w] == 0) queue.enqueue(w); } } // there is a directed cycle in subgraph of vertices with indegree >= 1. if (count != G.V()) { order = null; } assert check(G); } /** * Determines whether the edge-weighted digraph {@code G} has a * topological order and, if so, finds such a topological order. * @param G the digraph */ public TopologicalX(EdgeWeightedDigraph G) { // indegrees of remaining vertices int[] indegree = new int[G.V()]; for (int v = 0; v < G.V(); v++) { indegree[v] = G.indegree(v); } // initialize ranks = new int[G.V()]; order = new Queue<Integer>(); int count = 0; // initialize queue to contain all vertices with indegree = 0 Queue<Integer> queue = new Queue<Integer>(); for (int v = 0; v < G.V(); v++) if (indegree[v] == 0) queue.enqueue(v); while (!queue.isEmpty()) { int v = queue.dequeue(); order.enqueue(v); ranks[v] = count++; for (DirectedEdge e : G.adj(v)) { int w = e.to(); indegree[w]--; if (indegree[w] == 0) queue.enqueue(w); } } // there is a directed cycle in subgraph of vertices with indegree >= 1. if (count != G.V()) { order = null; } assert check(G); } /** * Returns a topological order if the digraph has a topological order, * and {@code null} otherwise. * @return a topological order of the vertices (as an iterable) if the * digraph has a topological order (or equivalently, if the digraph is a DAG), * and {@code null} otherwise */ public Iterable<Integer> order() { return order; } /** * Does the digraph have a topological order? * @return {@code true} if the digraph has a topological order (or equivalently, * if the digraph is a DAG), and {@code false} otherwise */ public boolean hasOrder() { return order != null; } /** * The rank of vertex {@code v} in the topological order; * -1 if the digraph is not a DAG * * @param v vertex * @return the position of vertex {@code v} in a topological order * of the digraph; -1 if the digraph is not a DAG * @throws IllegalArgumentException unless {@code 0 <= v < V} */ public int rank(int v) { validateVertex(v); if (hasOrder()) return ranks[v]; else return -1; } // certify that digraph is acyclic private boolean check(Digraph G) { // digraph is acyclic if (hasOrder()) { // check that ranks are a permutation of 0 to V-1 boolean[] found = new boolean[G.V()]; for (int i = 0; i < G.V(); i++) { found[rank(i)] = true; } for (int i = 0; i < G.V(); i++) { if (!found[i]) { System.err.println("No vertex with rank " + i); return false; } } // check that ranks provide a valid topological order for (int v = 0; v < G.V(); v++) { for (int w : G.adj(v)) { if (rank(v) > rank(w)) { System.err.printf("%d-%d: rank(%d) = %d, rank(%d) = %d\n", v, w, v, rank(v), w, rank(w)); return false; } } } // check that order() is consistent with rank() int r = 0; for (int v : order()) { if (rank(v) != r) { System.err.println("order() and rank() inconsistent"); return false; } r++; } } return true; } // certify that digraph is acyclic private boolean check(EdgeWeightedDigraph G) { // digraph is acyclic if (hasOrder()) { // check that ranks are a permutation of 0 to V-1 boolean[] found = new boolean[G.V()]; for (int i = 0; i < G.V(); i++) { found[rank(i)] = true; } for (int i = 0; i < G.V(); i++) { if (!found[i]) { System.err.println("No vertex with rank " + i); return false; } } // check that ranks provide a valid topological order for (int v = 0; v < G.V(); v++) { for (DirectedEdge e : G.adj(v)) { int w = e.to(); if (rank(v) > rank(w)) { System.err.printf("%d-%d: rank(%d) = %d, rank(%d) = %d\n", v, w, v, rank(v), w, rank(w)); return false; } } } // check that order() is consistent with rank() int r = 0; for (int v : order()) { if (rank(v) != r) { System.err.println("order() and rank() inconsistent"); return false; } r++; } } return true; } // throw an IllegalArgumentException unless {@code 0 <= v < V} private void validateVertex(int v) { int V = ranks.length; if (v < 0 || v >= V) throw new IllegalArgumentException("vertex " + v + " is not between 0 and " + (V-1)); } /** * Unit tests the {@code TopologicalX} data type. * * @param args the command-line arguments */ public static void main(String[] args) { // create random DAG with V vertices and E edges; then add F random edges int V = Integer.parseInt(args[0]); int E = Integer.parseInt(args[1]); int F = Integer.parseInt(args[2]); Digraph G1 = DigraphGenerator.dag(V, E); // corresponding edge-weighted digraph EdgeWeightedDigraph G2 = new EdgeWeightedDigraph(V); for (int v = 0; v < G1.V(); v++) for (int w : G1.adj(v)) G2.addEdge(new DirectedEdge(v, w, 0.0)); // add F extra edges for (int i = 0; i < F; i++) { int v = StdRandom.uniformInt(V); int w = StdRandom.uniformInt(V); G1.addEdge(v, w); G2.addEdge(new DirectedEdge(v, w, 0.0)); } StdOut.println(G1); StdOut.println(); StdOut.println(G2); // find a directed cycle TopologicalX topological1 = new TopologicalX(G1); if (!topological1.hasOrder()) { StdOut.println("Not a DAG"); } // or give topological sort else { StdOut.print("Topological order: "); for (int v : topological1.order()) { StdOut.print(v + " "); } StdOut.println(); } // find a directed cycle TopologicalX topological2 = new TopologicalX(G2); if (!topological2.hasOrder()) { StdOut.println("Not a DAG"); } // or give topological sort else { StdOut.print("Topological order: "); for (int v : topological2.order()) { StdOut.print(v + " "); } StdOut.println(); } } }