/****************************************************************************** * Compilation: javac NonrecursiveDirectedDFS.java * Execution: java NonrecursiveDirectedDFS digraph.txt s * Dependencies: Digraph.java Queue.java Stack.java StdOut.java * Data files: https://algs4.cs.princeton.edu/42digraph/tinyDG.txt * https://algs4.cs.princeton.edu/42digraph/mediumDG.txt * https://algs4.cs.princeton.edu/42digraph/largeDG.txt * * Run nonrecurisve depth-first search on a directed graph. * Runs in O(E + V) time. * * Explores the vertices in exactly the same order as DirectedDFS.java. * * * % java NonrecursiveDirectedDFS tinyDG.txt 1 * 1 * * % java NonrecursiveDirectedDFS tinyDG.txt 2 * 0 1 2 3 4 5 * ******************************************************************************/ import java.util.Iterator; /** * The {@code NonrecursiveDirectedDFS} class represents a data type for finding * the vertices reachable from a source vertex s in the digraph. *

* This implementation uses a nonrecursive version of depth-first search * with an explicit stack. * The constructor takes Θ(V + E) time in the * worst case, where V is the number of vertices and E * is the number of edges. * Each instance method takes Θ(1) time. * It uses Θ(V) extra space (not including the digraph). *

* For additional documentation, * see Section 4.2 of * Algorithms, 4th Edition by Robert Sedgewick and Kevin Wayne. * * @author Robert Sedgewick * @author Kevin Wayne */ public class NonrecursiveDirectedDFS { private boolean[] marked; // marked[v] = is there an s->v path? /** * Computes the vertices reachable from the source vertex {@code s} in the digraph {@code G}. * @param G the digraph * @param s the source vertex * @throws IllegalArgumentException unless {@code 0 <= s < V} */ public NonrecursiveDirectedDFS(Digraph G, int s) { marked = new boolean[G.V()]; validateVertex(s); // to be able to iterate over each adjacency list, keeping track of which // vertex in each adjacency list needs to be explored next Iterator[] adj = (Iterator[]) new Iterator[G.V()]; for (int v = 0; v < G.V(); v++) adj[v] = G.adj(v).iterator(); // depth-first search using an explicit stack Stack stack = new Stack(); marked[s] = true; stack.push(s); while (!stack.isEmpty()) { int v = stack.peek(); if (adj[v].hasNext()) { int w = adj[v].next(); // StdOut.printf("check %d\n", w); if (!marked[w]) { // discovered vertex w for the first time marked[w] = true; // edgeTo[w] = v; stack.push(w); // StdOut.printf("dfs(%d)\n", w); } } else { // StdOut.printf("%d done\n", v); stack.pop(); } } } /** * Is vertex {@code v} reachable from the source vertex {@code s}? * @param v the vertex * @return {@code true} if vertex {@code v} is reachable from the source vertex {@code s}, * and {@code false} otherwise * @throws IllegalArgumentException unless {@code 0 <= v < V} */ public boolean marked(int v) { validateVertex(v); return marked[v]; } // throw an IllegalArgumentException unless {@code 0 <= v < V} private void validateVertex(int v) { int V = marked.length; if (v < 0 || v >= V) throw new IllegalArgumentException("vertex " + v + " is not between 0 and " + (V-1)); } /** * Unit tests the {@code NonrecursiveDirectedDFS} data type. * * @param args the command-line arguments */ public static void main(String[] args) { In in = new In(args[0]); Digraph G = new Digraph(in); int s = Integer.parseInt(args[1]); NonrecursiveDirectedDFS dfs = new NonrecursiveDirectedDFS(G, s); for (int v = 0; v < G.V(); v++) if (dfs.marked(v)) StdOut.print(v + " "); StdOut.println(); } }