Below is the syntax highlighted version of KosarajuSharirSCC.java
from §4.2 Directed Graphs.
/****************************************************************************** * Compilation: javac KosarajuSharirSCC.java * Execution: java KosarajuSharirSCC filename.txt * Dependencies: Digraph.java TransitiveClosure.java StdOut.java In.java * Data files: https://algs4.cs.princeton.edu/42digraph/tinyDG.txt * https://algs4.cs.princeton.edu/42digraph/mediumDG.txt * https://algs4.cs.princeton.edu/42digraph/largeDG.txt * * Compute the strongly-connected components of a digraph using the * Kosaraju-Sharir algorithm. * * Runs in O(E + V) time. * * % java KosarajuSharirSCC tinyDG.txt * 5 strong components * 1 * 0 2 3 4 5 * 9 10 11 12 * 6 8 * 7 * * % java KosarajuSharirSCC mediumDG.txt * 10 strong components * 21 * 2 5 6 8 9 11 12 13 15 16 18 19 22 23 25 26 28 29 30 31 32 33 34 35 37 38 39 40 42 43 44 46 47 48 49 * 14 * 3 4 17 20 24 27 36 * 41 * 7 * 45 * 1 * 0 * 10 * * % java -Xss50m KosarajuSharirSCC mediumDG.txt * 25 strong components * 7 11 32 36 61 84 95 116 121 128 230 ... * 28 73 80 104 115 143 149 164 184 185 ... * 38 40 200 201 207 218 286 387 418 422 ... * 12 14 56 78 87 103 216 269 271 272 ... * 42 48 112 135 160 217 243 246 273 346 ... * 46 76 96 97 224 237 297 303 308 309 ... * 9 15 21 22 27 90 167 214 220 225 227 ... * 74 99 133 146 161 166 202 205 245 262 ... * 43 83 94 120 125 183 195 206 244 254 ... * 1 13 54 91 92 93 106 140 156 194 208 ... * 10 39 67 69 131 144 145 154 168 258 ... * 6 52 66 113 118 122 139 147 212 213 ... * 8 127 150 182 203 204 249 367 400 432 ... * 63 65 101 107 108 136 169 170 171 173 ... * 55 71 102 155 159 198 228 252 325 419 ... * 4 25 34 58 70 152 172 196 199 210 226 ... * 2 44 50 88 109 138 141 178 197 211 ... * 57 89 129 162 174 179 188 209 238 276 ... * 33 41 49 119 126 132 148 181 215 221 ... * 3 18 23 26 35 64 105 124 157 186 251 ... * 5 16 17 20 31 47 81 98 158 180 187 ... * 24 29 51 59 75 82 100 114 117 134 151 ... * 30 45 53 60 72 85 111 130 137 142 163 ... * 19 37 62 77 79 110 153 352 353 361 ... * 0 68 86 123 165 176 193 239 289 336 ... * ******************************************************************************/ /** * The {@code KosarajuSharirSCC} class represents a data type for * determining the strong components in a digraph. * The <em>id</em> operation determines in which strong component * a given vertex lies; the <em>areStronglyConnected</em> operation * determines whether two vertices are in the same strong component; * and the <em>count</em> operation determines the number of strong * components. * <p> * The <em>component identifier</em> of a vertex is an integer between * 0 and <em>k</em>–1, where <em>k</em> is the number of strong components. * Two vertices have the same component identifier if and only if they * are in the same strong component. * <p> * This implementation uses the Kosaraju-Sharir algorithm. * The constructor takes Θ(<em>V</em> + <em>E</em>) time, * where <em>V</em> is the number of vertices and <em>E</em> * is the number of edges. * Each instance method takes Θ(1) time. * It uses Θ(<em>V</em>) extra space (not including the digraph). * For alternative implementations of the same API, see * {@link TarjanSCC} and {@link GabowSCC}. * <p> * For additional documentation, see * <a href="https://algs4.cs.princeton.edu/42digraph">Section 4.2</a> of * <i>Algorithms, 4th Edition</i> by Robert Sedgewick and Kevin Wayne. * * @author Robert Sedgewick * @author Kevin Wayne */ public class KosarajuSharirSCC { private boolean[] marked; // marked[v] = has vertex v been visited? private int[] id; // id[v] = id of strong component containing v private int count; // number of strongly-connected components /** * Computes the strong components of the digraph {@code G}. * @param G the digraph */ public KosarajuSharirSCC(Digraph G) { // compute reverse postorder of reverse graph DepthFirstOrder dfs = new DepthFirstOrder(G.reverse()); // run DFS on G, using reverse postorder to guide calculation marked = new boolean[G.V()]; id = new int[G.V()]; for (int v : dfs.reversePost()) { if (!marked[v]) { dfs(G, v); count++; } } // check that id[] gives strong components assert check(G); } // DFS on graph G private void dfs(Digraph G, int v) { marked[v] = true; id[v] = count; for (int w : G.adj(v)) { if (!marked[w]) dfs(G, w); } } /** * Returns the number of strong components. * @return the number of strong components */ public int count() { return count; } /** * Are vertices {@code v} and {@code w} in the same strong component? * @param v one vertex * @param w the other vertex * @return {@code true} if vertices {@code v} and {@code w} are in the same * strong component, and {@code false} otherwise * @throws IllegalArgumentException unless {@code 0 <= v < V} * @throws IllegalArgumentException unless {@code 0 <= w < V} */ public boolean stronglyConnected(int v, int w) { validateVertex(v); validateVertex(w); return id[v] == id[w]; } /** * Returns the component id of the strong component containing vertex {@code v}. * @param v the vertex * @return the component id of the strong component containing vertex {@code v} * @throws IllegalArgumentException unless {@code 0 <= s < V} */ public int id(int v) { validateVertex(v); return id[v]; } // does the id[] array contain the strongly connected components? private boolean check(Digraph G) { TransitiveClosure tc = new TransitiveClosure(G); for (int v = 0; v < G.V(); v++) { for (int w = 0; w < G.V(); w++) { if (stronglyConnected(v, w) != (tc.reachable(v, w) && tc.reachable(w, v))) return false; } } return true; } // throw an IllegalArgumentException unless {@code 0 <= v < V} private void validateVertex(int v) { int V = marked.length; if (v < 0 || v >= V) throw new IllegalArgumentException("vertex " + v + " is not between 0 and " + (V-1)); } /** * Unit tests the {@code KosarajuSharirSCC} data type. * * @param args the command-line arguments */ public static void main(String[] args) { In in = new In(args[0]); Digraph G = new Digraph(in); KosarajuSharirSCC scc = new KosarajuSharirSCC(G); // number of connected components int m = scc.count(); StdOut.println(m + " strong components"); // compute list of vertices in each strong component Queue<Integer>[] components = (Queue<Integer>[]) new Queue[m]; for (int i = 0; i < m; i++) { components[i] = new Queue<Integer>(); } for (int v = 0; v < G.V(); v++) { components[scc.id(v)].enqueue(v); } // print results for (int i = 0; i < m; i++) { for (int v : components[i]) { StdOut.print(v + " "); } StdOut.println(); } } }