Below is the syntax highlighted version of DirectedCycleX.java
from §4.2 Directed Graphs.
/****************************************************************************** * Compilation: javac DirectedCycleX.java * Execution: java DirectedCycleX V E F * Dependencies: Queue.java Digraph.java Stack.java * * Find a directed cycle in a digraph, using a nonrecursive, queue-based * algorithm. Runs in O(E + V) time. * ******************************************************************************/ /** * The {@code DirectedCycleX} class represents a data type for * determining whether a digraph has a directed cycle. * The <em>hasCycle</em> operation determines whether the digraph has * a simple directed cycle and, if so, the <em>cycle</em> operation * returns one. * <p> * This implementation uses a nonrecursive, queue-based algorithm. * The constructor takes time proportional to <em>V</em> + <em>E</em> * (in the worst case), * where <em>V</em> is the number of vertices and <em>E</em> is the * number of edges. * Each instance method takes Θ(1) time. * It uses Θ(<em>V</em>) extra space (not including the digraph). * <p> * See {@link DirectedCycle} for a recursive version that uses depth-first search. * See {@link Topological} or {@link TopologicalX} to compute a topological order * when the digraph is acyclic. * <p> * For additional documentation, * see <a href="https://algs4.cs.princeton.edu/42digraph">Section 4.2</a> of * <i>Algorithms, 4th Edition</i> by Robert Sedgewick and Kevin Wayne. * * @author Robert Sedgewick * @author Kevin Wayne */ public class DirectedCycleX { private Stack<Integer> cycle; // the directed cycle; null if digraph is acyclic public DirectedCycleX(Digraph G) { // indegrees of remaining vertices int[] indegree = new int[G.V()]; for (int v = 0; v < G.V(); v++) { indegree[v] = G.indegree(v); } // initialize queue to contain all vertices with indegree = 0 Queue<Integer> queue = new Queue<Integer>(); for (int v = 0; v < G.V(); v++) if (indegree[v] == 0) queue.enqueue(v); while (!queue.isEmpty()) { int v = queue.dequeue(); for (int w : G.adj(v)) { indegree[w]--; if (indegree[w] == 0) queue.enqueue(w); } } // there is a directed cycle in subgraph of vertices with indegree >= 1. int[] edgeTo = new int[G.V()]; int root = -1; // any vertex with indegree >= -1 for (int v = 0; v < G.V(); v++) { if (indegree[v] == 0) continue; else root = v; for (int w : G.adj(v)) { if (indegree[w] > 0) { edgeTo[w] = v; } } } if (root != -1) { // find any vertex on cycle boolean[] visited = new boolean[G.V()]; while (!visited[root]) { visited[root] = true; root = edgeTo[root]; } // extract cycle cycle = new Stack<Integer>(); int v = root; do { cycle.push(v); v = edgeTo[v]; } while (v != root); cycle.push(root); } assert check(); } /** * Returns a directed cycle if the digraph has a directed cycle, and {@code null} otherwise. * @return a directed cycle (as an iterable) if the digraph has a directed cycle, * and {@code null} otherwise */ public Iterable<Integer> cycle() { return cycle; } /** * Does the digraph have a directed cycle? * @return {@code true} if the digraph has a directed cycle, {@code false} otherwise */ public boolean hasCycle() { return cycle != null; } // certify that digraph has a directed cycle if it reports one private boolean check() { if (hasCycle()) { // verify cycle int first = -1, last = -1; for (int v : cycle()) { if (first == -1) first = v; last = v; } if (first != last) { System.err.printf("cycle begins with %d and ends with %d\n", first, last); return false; } } return true; } public static void main(String[] args) { // create random DAG with V vertices and E edges; then add F random edges int V = Integer.parseInt(args[0]); int E = Integer.parseInt(args[1]); int F = Integer.parseInt(args[2]); Digraph G = DigraphGenerator.dag(V, E); // add F extra edges for (int i = 0; i < F; i++) { int v = StdRandom.uniformInt(V); int w = StdRandom.uniformInt(V); G.addEdge(v, w); } StdOut.println(G); DirectedCycleX finder = new DirectedCycleX(G); if (finder.hasCycle()) { StdOut.print("Directed cycle: "); for (int v : finder.cycle()) { StdOut.print(v + " "); } StdOut.println(); } else { StdOut.println("No directed cycle"); } StdOut.println(); } }