Below is the syntax highlighted version of BruteSCC.java
from §4.2 Directed Graphs.
/****************************************************************************** * Compilation: javac BruteSCC.java * Execution: java BruteSCC filename.txt * Dependencies: Digraph.java TransitiveClosure.java * Data files: https://algs4.cs.princeton.edu/42digraph/tinyDG.txt * https://algs4.cs.princeton.edu/42digraph/mediumDG.txt * https://algs4.cs.princeton.edu/42digraph/largeDG.txt * * Compute the strongly-connected components of a digraph using * brute force. * * Runs in O(EV) time. * * % java BruteSCC tinyDG.txt * 5 components * 0 2 3 4 5 * 1 * 6 * 7 8 * 9 10 11 12 * ******************************************************************************/ public class BruteSCC { private int count; // number of strongly connected components private int[] id; // id[v] = id of strong component containing v public BruteSCC(Digraph G) { // initially each vertex is in its own component id = new int[G.V()]; for (int v = 0; v < G.V(); v++) id[v] = v; // compute transitive closure TransitiveClosure tc = new TransitiveClosure(G); // if v and w are mutally reachable, assign v to w's component for (int v = 0; v < G.V(); v++) for (int w = 0; w < v; w++) if (tc.reachable(v, w) && tc.reachable(w, v)) id[v] = id[w]; // compute number of strongly connected components for (int v = 0; v < G.V(); v++) if (id[v] == v) count++; } // return the number of strongly connected components public int count() { return count; } // are v and w strongly connected? public boolean stronglyConnected(int v, int w) { return id[v] == id[w]; } // in which strongly connected component is vertex v? public int id(int v) { return id[v]; } public static void main(String[] args) { In in = new In(args[0]); Digraph G = new Digraph(in); BruteSCC scc = new BruteSCC(G); // number of connected components int m = scc.count(); StdOut.println(m + " components"); // compute list of vertices in each strong component Queue<Integer>[] components = (Queue<Integer>[]) new Queue[m]; for (int i = 0; i < G.V(); i++) { components[i] = new Queue<Integer>(); } for (int v = 0; v < G.V(); v++) { components[scc.id(v)].enqueue(v); } // print results for (int i = 0; i < m; i++) { for (int v : components[i]) { StdOut.print(v + " "); } StdOut.println(); } } }