Below is the syntax highlighted version of EulerianCycle.java
from §4.1 Undirected Graphs.
/****************************************************************************** * Compilation: javac EulerianCycle.java * Execution: java EulerianCycle V E * Dependencies: Graph.java Stack.java StdOut.java * * Find an Eulerian cycle in a graph, if one exists. * * Runs in O(E + V) time. * * This implementation is trickier than the one for digraphs because * when we use edge v-w from v's adjacency list, we must be careful * not to use the second copy of the edge from w's adjacency list. * ******************************************************************************/ /** * The {@code EulerianCycle} class represents a data type * for finding an Eulerian cycle or path in a graph. * An <em>Eulerian cycle</em> is a cycle (not necessarily simple) that * uses every edge in the graph exactly once. * <p> * This implementation uses a nonrecursive depth-first search. * The constructor takes Θ(<em>E</em> + <em>V</em>) time in the worst * case, where <em>E</em> is the number of edges and <em>V</em> is the * number of vertices * Each instance method takes Θ(1) time. * It uses Θ(<em>E</em> + <em>V</em>) extra space in the worst case * (not including the graph). * <p> * To compute Eulerian paths in graphs, see {@link EulerianPath}. * To compute Eulerian cycles and paths in digraphs, see * {@link DirectedEulerianCycle} and {@link DirectedEulerianPath}. * <p> * For additional documentation, * see <a href="https://algs4.cs.princeton.edu/41graph">Section 4.1</a> of * <i>Algorithms, 4th Edition</i> by Robert Sedgewick and Kevin Wayne. * * @author Robert Sedgewick * @author Kevin Wayne * @author Nate Liu */ public class EulerianCycle { private Stack<Integer> cycle = new Stack<Integer>(); // Eulerian cycle; null if no such cycle // an undirected edge, with a field to indicate whether the edge has already been used private static class Edge { private final int v; private final int w; private boolean isUsed; public Edge(int v, int w) { this.v = v; this.w = w; isUsed = false; } // returns the other vertex of the edge public int other(int vertex) { if (vertex == v) return w; else if (vertex == w) return v; else throw new IllegalArgumentException("Illegal endpoint"); } } /** * Computes an Eulerian cycle in the specified graph, if one exists. * * @param G the graph */ public EulerianCycle(Graph G) { // must have at least one edge if (G.E() == 0) return; // necessary condition: all vertices have even degree // (this test is needed, or it might find an Eulerian path instead of cycle) for (int v = 0; v < G.V(); v++) if (G.degree(v) % 2 != 0) return; // create local view of adjacency lists, to iterate one vertex at a time // the helper Edge data type is used to avoid exploring both copies of an edge v-w Queue<Edge>[] adj = (Queue<Edge>[]) new Queue[G.V()]; for (int v = 0; v < G.V(); v++) adj[v] = new Queue<Edge>(); for (int v = 0; v < G.V(); v++) { int selfLoops = 0; for (int w : G.adj(v)) { // careful with self loops if (v == w) { if (selfLoops % 2 == 0) { Edge e = new Edge(v, w); adj[v].enqueue(e); adj[w].enqueue(e); } selfLoops++; } else if (v < w) { Edge e = new Edge(v, w); adj[v].enqueue(e); adj[w].enqueue(e); } } } // initialize stack with any non-isolated vertex int s = nonIsolatedVertex(G); Stack<Integer> stack = new Stack<Integer>(); stack.push(s); // greedily search through edges in iterative DFS style cycle = new Stack<Integer>(); while (!stack.isEmpty()) { int v = stack.pop(); while (!adj[v].isEmpty()) { Edge edge = adj[v].dequeue(); if (edge.isUsed) continue; edge.isUsed = true; stack.push(v); v = edge.other(v); } // push vertex with no more leaving edges to cycle cycle.push(v); } // check if all edges are used if (cycle.size() != G.E() + 1) cycle = null; assert certifySolution(G); } /** * Returns the sequence of vertices on an Eulerian cycle. * * @return the sequence of vertices on an Eulerian cycle; * {@code null} if no such cycle */ public Iterable<Integer> cycle() { return cycle; } /** * Returns true if the graph has an Eulerian cycle. * * @return {@code true} if the graph has an Eulerian cycle; * {@code false} otherwise */ public boolean hasEulerianCycle() { return cycle != null; } // returns any non-isolated vertex; -1 if no such vertex private static int nonIsolatedVertex(Graph G) { for (int v = 0; v < G.V(); v++) if (G.degree(v) > 0) return v; return -1; } /************************************************************************** * * The code below is solely for testing correctness of the data type. * **************************************************************************/ // Determines whether a graph has an Eulerian cycle using necessary // and sufficient conditions (without computing the cycle itself): // - at least one edge // - degree(v) is even for every vertex v // - the graph is connected (ignoring isolated vertices) private static boolean satisfiesNecessaryAndSufficientConditions(Graph G) { // Condition 0: at least 1 edge if (G.E() == 0) return false; // Condition 1: degree(v) is even for every vertex for (int v = 0; v < G.V(); v++) if (G.degree(v) % 2 != 0) return false; // Condition 2: graph is connected, ignoring isolated vertices int s = nonIsolatedVertex(G); BreadthFirstPaths bfs = new BreadthFirstPaths(G, s); for (int v = 0; v < G.V(); v++) if (G.degree(v) > 0 && !bfs.hasPathTo(v)) return false; return true; } // check that solution is correct private boolean certifySolution(Graph G) { // internal consistency check if (hasEulerianCycle() == (cycle() == null)) return false; // hashEulerianCycle() returns correct value if (hasEulerianCycle() != satisfiesNecessaryAndSufficientConditions(G)) return false; // nothing else to check if no Eulerian cycle if (cycle == null) return true; // check that cycle() uses correct number of edges if (cycle.size() != G.E() + 1) return false; // check that cycle() is a cycle of G // TODO // check that first and last vertices in cycle() are the same int first = -1, last = -1; for (int v : cycle()) { if (first == -1) first = v; last = v; } if (first != last) return false; return true; } private static void unitTest(Graph G, String description) { StdOut.println(description); StdOut.println("-------------------------------------"); StdOut.print(G); EulerianCycle euler = new EulerianCycle(G); StdOut.print("Eulerian cycle: "); if (euler.hasEulerianCycle()) { for (int v : euler.cycle()) { StdOut.print(v + " "); } StdOut.println(); } else { StdOut.println("none"); } StdOut.println(); } /** * Unit tests the {@code EulerianCycle} data type. * * @param args the command-line arguments */ public static void main(String[] args) { int V = Integer.parseInt(args[0]); int E = Integer.parseInt(args[1]); // Eulerian cycle Graph G1 = GraphGenerator.eulerianCycle(V, E); unitTest(G1, "Eulerian cycle"); // Eulerian path Graph G2 = GraphGenerator.eulerianPath(V, E); unitTest(G2, "Eulerian path"); // empty graph Graph G3 = new Graph(V); unitTest(G3, "empty graph"); // self loop Graph G4 = new Graph(V); int v4 = StdRandom.uniformInt(V); G4.addEdge(v4, v4); unitTest(G4, "single self loop"); // union of two disjoint cycles Graph H1 = GraphGenerator.eulerianCycle(V/2, E/2); Graph H2 = GraphGenerator.eulerianCycle(V - V/2, E - E/2); int[] perm = new int[V]; for (int i = 0; i < V; i++) perm[i] = i; StdRandom.shuffle(perm); Graph G5 = new Graph(V); for (int v = 0; v < H1.V(); v++) for (int w : H1.adj(v)) G5.addEdge(perm[v], perm[w]); for (int v = 0; v < H2.V(); v++) for (int w : H2.adj(v)) G5.addEdge(perm[V/2 + v], perm[V/2 + w]); unitTest(G5, "Union of two disjoint cycles"); // random digraph Graph G6 = GraphGenerator.simple(V, E); unitTest(G6, "simple graph"); } }