Below is the syntax highlighted version of Cycle.java
from §4.1 Undirected Graphs.
/****************************************************************************** * Compilation: javac Cycle.java * Execution: java Cycle filename.txt * Dependencies: Graph.java Stack.java In.java StdOut.java * Data files: https://algs4.cs.princeton.edu/41graph/tinyG.txt * https://algs4.cs.princeton.edu/41graph/mediumG.txt * https://algs4.cs.princeton.edu/41graph/largeG.txt * * Identifies a cycle. * Runs in O(E + V) time. * * % java Cycle tinyG.txt * 3 4 5 3 * * % java Cycle mediumG.txt * 15 0 225 15 * * % java Cycle largeG.txt * 996673 762 840164 4619 785187 194717 996673 * ******************************************************************************/ /** * The {@code Cycle} class represents a data type for * determining whether an undirected graph has a simple cycle. * The <em>hasCycle</em> operation determines whether the graph has * a cycle and, if so, the <em>cycle</em> operation returns one. * <p> * This implementation uses depth-first search. * The constructor takes Θ(<em>V</em> + <em>E</em>) time in the * worst case, where <em>V</em> is the number of vertices and * <em>E</em> is the number of edges. * (The depth-first search part takes only <em>O</em>(<em>V</em>) time; * however, checking for self-loops and parallel edges takes * Θ(<em>V</em> + <em>E</em>) time in the worst case. * Each instance method takes Θ(1) time. * It uses Θ(<em>V</em>) extra space (not including the graph). * * <p> * For additional documentation, see * <a href="https://algs4.cs.princeton.edu/41graph">Section 4.1</a> * of <i>Algorithms, 4th Edition</i> by Robert Sedgewick and Kevin Wayne. * * @author Robert Sedgewick * @author Kevin Wayne */ public class Cycle { private boolean[] marked; private int[] edgeTo; private Stack<Integer> cycle; /** * Determines whether the undirected graph {@code G} has a cycle and, * if so, finds such a cycle. * * @param G the undirected graph */ public Cycle(Graph G) { // need special case to identify parallel edge as a cycle if (hasParallelEdges(G)) return; // don't need special case to identify self-loop as a cycle // if (hasSelfLoop(G)) return; marked = new boolean[G.V()]; edgeTo = new int[G.V()]; for (int v = 0; v < G.V(); v++) if (!marked[v]) dfs(G, -1, v); } // does this graph have a self loop? // side effect: initialize cycle to be self loop private boolean hasSelfLoop(Graph G) { for (int v = 0; v < G.V(); v++) { for (int w : G.adj(v)) { if (v == w) { cycle = new Stack<Integer>(); cycle.push(v); cycle.push(v); return true; } } } return false; } // does this graph have two parallel edges? // side effect: initialize cycle to be two parallel edges private boolean hasParallelEdges(Graph G) { marked = new boolean[G.V()]; for (int v = 0; v < G.V(); v++) { // check for parallel edges incident to v for (int w : G.adj(v)) { if (marked[w]) { cycle = new Stack<Integer>(); cycle.push(v); cycle.push(w); cycle.push(v); return true; } marked[w] = true; } // reset so marked[v] = false for all v for (int w : G.adj(v)) { marked[w] = false; } } return false; } /** * Returns true if the graph {@code G} has a cycle. * * @return {@code true} if the graph has a cycle; {@code false} otherwise */ public boolean hasCycle() { return cycle != null; } /** * Returns a cycle in the graph {@code G}. * @return a cycle if the graph {@code G} has a cycle, * and {@code null} otherwise */ public Iterable<Integer> cycle() { return cycle; } private void dfs(Graph G, int u, int v) { marked[v] = true; for (int w : G.adj(v)) { // short circuit if cycle already found if (cycle != null) return; if (!marked[w]) { edgeTo[w] = v; dfs(G, v, w); } // check for cycle (but disregard reverse of edge leading to v) else if (w != u) { cycle = new Stack<Integer>(); for (int x = v; x != w; x = edgeTo[x]) { cycle.push(x); } cycle.push(w); cycle.push(v); } } } /** * Unit tests the {@code Cycle} data type. * * @param args the command-line arguments */ public static void main(String[] args) { In in = new In(args[0]); Graph G = new Graph(in); Cycle finder = new Cycle(G); if (finder.hasCycle()) { for (int v : finder.cycle()) { StdOut.print(v + " "); } StdOut.println(); } else { StdOut.println("Graph is acyclic"); } } }