Below is the syntax highlighted version of AllPaths.java
from §4.1 Undirected Graphs.
/****************************************************************************** * Compilation: javac AllPaths.java * Execution: java AllPaths * Depedencies: Graph.java * * Enumerate all simple paths (of length >= 1) in a graph between s and t. * This implementation uses depth-first search and backtracking. * * Warning: there can be exponentially many simple paths in a graph, * so no algorithm is suitable for large graphs. * * 7 vertices, 9 edges * 0: 2 1 * 1: 5 0 * 2: 5 3 0 * 3: 6 4 2 * 4: 6 5 3 * 5: 4 1 2 * 6: 4 3 * * * all simple paths between 0 and 6: * 0-2-5-4-6 * 0-2-5-4-3-6 * 0-2-3-6 * 0-2-3-4-6 * 0-1-5-4-6 * 0-1-5-4-3-6 * 0-1-5-2-3-6 * 0-1-5-2-3-4-6 * # paths = 8 * * all simple paths between 1 and 5: * 1-5 * 1-0-2-5 * 1-0-2-3-6-4-5 * 1-0-2-3-4-5 * # paths = 4 * ******************************************************************************/ public class AllPaths { private boolean[] onPath; // vertices in current path private Stack<Integer> path; // the current path private int numberOfPaths; // number of simple path // show all simple paths from s to t - use DFS public AllPaths(Graph G, int s, int t) { onPath = new boolean[G.V()]; path = new Stack<Integer>(); dfs(G, s, t); } // use DFS private void dfs(Graph G, int v, int t) { // add v to current path path.push(v); onPath[v] = true; // found path from s to t if (v == t) { processCurrentPath(); numberOfPaths++; } // consider all neighbors that would continue path with repeating a node else { for (int w : G.adj(v)) { if (!onPath[w]) dfs(G, w, t); } } // done exploring from v, so remove from path path.pop(); onPath[v] = false; } // this implementation just prints the path to standard output private void processCurrentPath() { Stack<Integer> reverse = new Stack<Integer>(); for (int v : path) reverse.push(v); if (reverse.size() >= 1) StdOut.print(reverse.pop()); while (!reverse.isEmpty()) StdOut.print("-" + reverse.pop()); StdOut.println(); } // return number of simple paths between s and t public int numberOfPaths() { return numberOfPaths; } // test client public static void main(String[] args) { Graph G = new Graph(7); G.addEdge(0, 1); G.addEdge(0, 2); G.addEdge(2, 3); G.addEdge(3, 4); G.addEdge(2, 5); G.addEdge(1, 5); G.addEdge(5, 4); G.addEdge(3, 6); G.addEdge(4, 6); StdOut.println(G); StdOut.println(); StdOut.println("all simple paths between 0 and 6:"); AllPaths allpaths1 = new AllPaths(G, 0, 6); StdOut.println("# paths = " + allpaths1.numberOfPaths()); StdOut.println(); StdOut.println("all simple paths between 1 and 5:"); AllPaths allpaths2 = new AllPaths(G, 1, 5); StdOut.println("# paths = " + allpaths2.numberOfPaths()); } }