/******************************************************************************
* Compilation: javac BST.java
* Execution: java BST
* Dependencies: StdIn.java StdOut.java Queue.java
* Data files: https://algs4.cs.princeton.edu/32bst/tinyST.txt
*
* A symbol table implemented with a binary search tree.
*
* % more tinyST.txt
* S E A R C H E X A M P L E
*
* % java BST < tinyST.txt
* A 8
* C 4
* E 12
* H 5
* L 11
* M 9
* P 10
* R 3
* S 0
* X 7
*
******************************************************************************/
import java.util.NoSuchElementException;
/**
* The {@code BST} class represents an ordered symbol table of generic
* key-value pairs.
* It supports the usual put, get, contains,
* delete, size, and is-empty methods.
* It also provides ordered methods for finding the minimum,
* maximum, floor, select, ceiling.
* It also provides a keys method for iterating over all of the keys.
* A symbol table implements the associative array abstraction:
* when associating a value with a key that is already in the symbol table,
* the convention is to replace the old value with the new value.
* Unlike {@link java.util.Map}, this class uses the convention that
* values cannot be {@code null}—setting the
* value associated with a key to {@code null} is equivalent to deleting the key
* from the symbol table.
*
* It requires that
* the key type implements the {@code Comparable} interface and calls the
* {@code compareTo()} and method to compare two keys. It does not call either
* {@code equals()} or {@code hashCode()}.
*
* This implementation uses an (unbalanced) binary search tree.
* The put, contains, remove, minimum,
* maximum, ceiling, floor, select, and
* rank operations each take Θ(n) time in the worst
* case, where n is the number of key-value pairs.
* The size and is-empty operations take Θ(1) time.
* The keys method takes Θ(n) time in the worst case.
* Construction takes Θ(1) time.
*
* For alternative implementations of the symbol table API, see {@link ST},
* {@link BinarySearchST}, {@link SequentialSearchST}, {@link RedBlackBST},
* {@link SeparateChainingHashST}, and {@link LinearProbingHashST},
* For additional documentation, see
* Section 3.2 of
* Algorithms, 4th Edition by Robert Sedgewick and Kevin Wayne.
*
* @author Robert Sedgewick
* @author Kevin Wayne
*/
public class BST, Value> {
private Node root; // root of BST
private class Node {
private Key key; // sorted by key
private Value val; // associated data
private Node left, right; // left and right subtrees
private int size; // number of nodes in subtree
public Node(Key key, Value val, int size) {
this.key = key;
this.val = val;
this.size = size;
}
}
/**
* Initializes an empty symbol table.
*/
public BST() {
}
/**
* Returns true if this symbol table is empty.
* @return {@code true} if this symbol table is empty; {@code false} otherwise
*/
public boolean isEmpty() {
return size() == 0;
}
/**
* Returns the number of key-value pairs in this symbol table.
* @return the number of key-value pairs in this symbol table
*/
public int size() {
return size(root);
}
// return number of key-value pairs in BST rooted at x
private int size(Node x) {
if (x == null) return 0;
else return x.size;
}
/**
* Does this symbol table contain the given key?
*
* @param key the key
* @return {@code true} if this symbol table contains {@code key} and
* {@code false} otherwise
* @throws IllegalArgumentException if {@code key} is {@code null}
*/
public boolean contains(Key key) {
if (key == null) throw new IllegalArgumentException("argument to contains() is null");
return get(key) != null;
}
/**
* Returns the value associated with the given key.
*
* @param key the key
* @return the value associated with the given key if the key is in the symbol table
* and {@code null} if the key is not in the symbol table
* @throws IllegalArgumentException if {@code key} is {@code null}
*/
public Value get(Key key) {
return get(root, key);
}
private Value get(Node x, Key key) {
if (key == null) throw new IllegalArgumentException("calls get() with a null key");
if (x == null) return null;
int cmp = key.compareTo(x.key);
if (cmp < 0) return get(x.left, key);
else if (cmp > 0) return get(x.right, key);
else return x.val;
}
/**
* Inserts the specified key-value pair into the symbol table, overwriting the old
* value with the new value if the symbol table already contains the specified key.
* Deletes the specified key (and its associated value) from this symbol table
* if the specified value is {@code null}.
*
* @param key the key
* @param val the value
* @throws IllegalArgumentException if {@code key} is {@code null}
*/
public void put(Key key, Value val) {
if (key == null) throw new IllegalArgumentException("calls put() with a null key");
if (val == null) {
delete(key);
return;
}
root = put(root, key, val);
assert check();
}
private Node put(Node x, Key key, Value val) {
if (x == null) return new Node(key, val, 1);
int cmp = key.compareTo(x.key);
if (cmp < 0) x.left = put(x.left, key, val);
else if (cmp > 0) x.right = put(x.right, key, val);
else x.val = val;
x.size = 1 + size(x.left) + size(x.right);
return x;
}
/**
* Removes the smallest key and associated value from the symbol table.
*
* @throws NoSuchElementException if the symbol table is empty
*/
public void deleteMin() {
if (isEmpty()) throw new NoSuchElementException("Symbol table underflow");
root = deleteMin(root);
assert check();
}
private Node deleteMin(Node x) {
if (x.left == null) return x.right;
x.left = deleteMin(x.left);
x.size = size(x.left) + size(x.right) + 1;
return x;
}
/**
* Removes the largest key and associated value from the symbol table.
*
* @throws NoSuchElementException if the symbol table is empty
*/
public void deleteMax() {
if (isEmpty()) throw new NoSuchElementException("Symbol table underflow");
root = deleteMax(root);
assert check();
}
private Node deleteMax(Node x) {
if (x.right == null) return x.left;
x.right = deleteMax(x.right);
x.size = size(x.left) + size(x.right) + 1;
return x;
}
/**
* Removes the specified key and its associated value from this symbol table
* (if the key is in this symbol table).
*
* @param key the key
* @throws IllegalArgumentException if {@code key} is {@code null}
*/
public void delete(Key key) {
if (key == null) throw new IllegalArgumentException("calls delete() with a null key");
root = delete(root, key);
assert check();
}
private Node delete(Node x, Key key) {
if (x == null) return null;
int cmp = key.compareTo(x.key);
if (cmp < 0) x.left = delete(x.left, key);
else if (cmp > 0) x.right = delete(x.right, key);
else {
if (x.right == null) return x.left;
if (x.left == null) return x.right;
Node t = x;
x = min(t.right);
x.right = deleteMin(t.right);
x.left = t.left;
}
x.size = size(x.left) + size(x.right) + 1;
return x;
}
/**
* Returns the smallest key in the symbol table.
*
* @return the smallest key in the symbol table
* @throws NoSuchElementException if the symbol table is empty
*/
public Key min() {
if (isEmpty()) throw new NoSuchElementException("calls min() with empty symbol table");
return min(root).key;
}
private Node min(Node x) {
if (x.left == null) return x;
else return min(x.left);
}
/**
* Returns the largest key in the symbol table.
*
* @return the largest key in the symbol table
* @throws NoSuchElementException if the symbol table is empty
*/
public Key max() {
if (isEmpty()) throw new NoSuchElementException("calls max() with empty symbol table");
return max(root).key;
}
private Node max(Node x) {
if (x.right == null) return x;
else return max(x.right);
}
/**
* Returns the largest key in the symbol table less than or equal to {@code key}.
*
* @param key the key
* @return the largest key in the symbol table less than or equal to {@code key}
* @throws NoSuchElementException if there is no such key
* @throws IllegalArgumentException if {@code key} is {@code null}
*/
public Key floor(Key key) {
if (key == null) throw new IllegalArgumentException("argument to floor() is null");
if (isEmpty()) throw new NoSuchElementException("calls floor() with empty symbol table");
Node x = floor(root, key);
if (x == null) throw new NoSuchElementException("argument to floor() is too small");
else return x.key;
}
private Node floor(Node x, Key key) {
if (x == null) return null;
int cmp = key.compareTo(x.key);
if (cmp == 0) return x;
if (cmp < 0) return floor(x.left, key);
Node t = floor(x.right, key);
if (t != null) return t;
else return x;
}
public Key floor2(Key key) {
Key x = floor2(root, key, null);
if (x == null) throw new NoSuchElementException("argument to floor() is too small");
else return x;
}
private Key floor2(Node x, Key key, Key best) {
if (x == null) return best;
int cmp = key.compareTo(x.key);
if (cmp < 0) return floor2(x.left, key, best);
else if (cmp > 0) return floor2(x.right, key, x.key);
else return x.key;
}
/**
* Returns the smallest key in the symbol table greater than or equal to {@code key}.
*
* @param key the key
* @return the smallest key in the symbol table greater than or equal to {@code key}
* @throws NoSuchElementException if there is no such key
* @throws IllegalArgumentException if {@code key} is {@code null}
*/
public Key ceiling(Key key) {
if (key == null) throw new IllegalArgumentException("argument to ceiling() is null");
if (isEmpty()) throw new NoSuchElementException("calls ceiling() with empty symbol table");
Node x = ceiling(root, key);
if (x == null) throw new NoSuchElementException("argument to ceiling() is too large");
else return x.key;
}
private Node ceiling(Node x, Key key) {
if (x == null) return null;
int cmp = key.compareTo(x.key);
if (cmp == 0) return x;
if (cmp < 0) {
Node t = ceiling(x.left, key);
if (t != null) return t;
else return x;
}
return ceiling(x.right, key);
}
/**
* Return the key in the symbol table of a given {@code rank}.
* This key has the property that there are {@code rank} keys in
* the symbol table that are smaller. In other words, this key is the
* ({@code rank}+1)st smallest key in the symbol table.
*
* @param rank the order statistic
* @return the key in the symbol table of given {@code rank}
* @throws IllegalArgumentException unless {@code rank} is between 0 and
* n–1
*/
public Key select(int rank) {
if (rank < 0 || rank >= size()) {
throw new IllegalArgumentException("argument to select() is invalid: " + rank);
}
return select(root, rank);
}
// Return key in BST rooted at x of given rank.
// Precondition: rank is in legal range.
private Key select(Node x, int rank) {
if (x == null) return null;
int leftSize = size(x.left);
if (leftSize > rank) return select(x.left, rank);
else if (leftSize < rank) return select(x.right, rank - leftSize - 1);
else return x.key;
}
/**
* Return the number of keys in the symbol table strictly less than {@code key}.
*
* @param key the key
* @return the number of keys in the symbol table strictly less than {@code key}
* @throws IllegalArgumentException if {@code key} is {@code null}
*/
public int rank(Key key) {
if (key == null) throw new IllegalArgumentException("argument to rank() is null");
return rank(key, root);
}
// Number of keys in the subtree less than key.
private int rank(Key key, Node x) {
if (x == null) return 0;
int cmp = key.compareTo(x.key);
if (cmp < 0) return rank(key, x.left);
else if (cmp > 0) return 1 + size(x.left) + rank(key, x.right);
else return size(x.left);
}
/**
* Returns all keys in the symbol table in ascending order,
* as an {@code Iterable}.
* To iterate over all of the keys in the symbol table named {@code st},
* use the foreach notation: {@code for (Key key : st.keys())}.
*
* @return all keys in the symbol table in ascending order
*/
public Iterable keys() {
if (isEmpty()) return new Queue();
return keys(min(), max());
}
/**
* Returns all keys in the symbol table in the given range
* in ascending order, as an {@code Iterable}.
*
* @param lo minimum endpoint
* @param hi maximum endpoint
* @return all keys in the symbol table between {@code lo}
* (inclusive) and {@code hi} (inclusive) in ascending order
* @throws IllegalArgumentException if either {@code lo} or {@code hi}
* is {@code null}
*/
public Iterable keys(Key lo, Key hi) {
if (lo == null) throw new IllegalArgumentException("first argument to keys() is null");
if (hi == null) throw new IllegalArgumentException("second argument to keys() is null");
Queue queue = new Queue();
keys(root, queue, lo, hi);
return queue;
}
private void keys(Node x, Queue queue, Key lo, Key hi) {
if (x == null) return;
int cmplo = lo.compareTo(x.key);
int cmphi = hi.compareTo(x.key);
if (cmplo < 0) keys(x.left, queue, lo, hi);
if (cmplo <= 0 && cmphi >= 0) queue.enqueue(x.key);
if (cmphi > 0) keys(x.right, queue, lo, hi);
}
/**
* Returns the number of keys in the symbol table in the given range.
*
* @param lo minimum endpoint
* @param hi maximum endpoint
* @return the number of keys in the symbol table between {@code lo}
* (inclusive) and {@code hi} (inclusive)
* @throws IllegalArgumentException if either {@code lo} or {@code hi}
* is {@code null}
*/
public int size(Key lo, Key hi) {
if (lo == null) throw new IllegalArgumentException("first argument to size() is null");
if (hi == null) throw new IllegalArgumentException("second argument to size() is null");
if (lo.compareTo(hi) > 0) return 0;
if (contains(hi)) return rank(hi) - rank(lo) + 1;
else return rank(hi) - rank(lo);
}
/**
* Returns the height of the BST (for debugging).
*
* @return the height of the BST (a 1-node tree has height 0)
*/
public int height() {
return height(root);
}
private int height(Node x) {
if (x == null) return -1;
return 1 + Math.max(height(x.left), height(x.right));
}
/**
* Returns the keys in the BST in level order (for debugging).
*
* @return the keys in the BST in level order traversal
*/
public Iterable levelOrder() {
Queue keys = new Queue();
Queue queue = new Queue();
queue.enqueue(root);
while (!queue.isEmpty()) {
Node x = queue.dequeue();
if (x == null) continue;
keys.enqueue(x.key);
queue.enqueue(x.left);
queue.enqueue(x.right);
}
return keys;
}
/*************************************************************************
* Check integrity of BST data structure.
***************************************************************************/
private boolean check() {
if (!isBST()) StdOut.println("Not in symmetric order");
if (!isSizeConsistent()) StdOut.println("Subtree counts not consistent");
if (!isRankConsistent()) StdOut.println("Ranks not consistent");
return isBST() && isSizeConsistent() && isRankConsistent();
}
// does this binary tree satisfy symmetric order?
// Note: this test also ensures that data structure is a binary tree since order is strict
private boolean isBST() {
return isBST(root, null, null);
}
// is the tree rooted at x a BST with all keys strictly between min and max
// (if min or max is null, treat as empty constraint)
// Credit: elegant solution due to Bob Dondero
private boolean isBST(Node x, Key min, Key max) {
if (x == null) return true;
if (min != null && x.key.compareTo(min) <= 0) return false;
if (max != null && x.key.compareTo(max) >= 0) return false;
return isBST(x.left, min, x.key) && isBST(x.right, x.key, max);
}
// are the size fields correct?
private boolean isSizeConsistent() { return isSizeConsistent(root); }
private boolean isSizeConsistent(Node x) {
if (x == null) return true;
if (x.size != size(x.left) + size(x.right) + 1) return false;
return isSizeConsistent(x.left) && isSizeConsistent(x.right);
}
// check that ranks are consistent
private boolean isRankConsistent() {
for (int i = 0; i < size(); i++)
if (i != rank(select(i))) return false;
for (Key key : keys())
if (key.compareTo(select(rank(key))) != 0) return false;
return true;
}
/**
* Unit tests the {@code BST} data type.
*
* @param args the command-line arguments
*/
public static void main(String[] args) {
BST st = new BST();
for (int i = 0; !StdIn.isEmpty(); i++) {
String key = StdIn.readString();
st.put(key, i);
}
for (String s : st.levelOrder())
StdOut.println(s + " " + st.get(s));
StdOut.println();
for (String s : st.keys())
StdOut.println(s + " " + st.get(s));
}
}