Below is the syntax highlighted version of QuickX.java
from §2.3 Quicksort.
/****************************************************************************** * Compilation: javac QuickX.java * Execution: java QuickX < input.txt * Dependencies: StdOut.java StdIn.java * Data files: https://algs4.cs.princeton.edu/23quicksort/tiny.txt * https://algs4.cs.princeton.edu/23quicksort/words3.txt * * Uses the Hoare's 2-way partitioning scheme, chooses the partitioning * element using median-of-3, and cuts off to insertion sort. * ******************************************************************************/ /** * The {@code QuickX} class provides static methods for sorting an array * using an optimized version of quicksort (using Hoare's 2-way partitioning * algorithm, median-of-3 to choose the partitioning element, and cutoff * to insertion sort). * <p> * For additional documentation, see * <a href="https://algs4.cs.princeton.edu/23quicksort">Section 2.3</a> * of <i>Algorithms, 4th Edition</i> by Robert Sedgewick and Kevin Wayne. * * @author Robert Sedgewick * @author Kevin Wayne */ public class QuickX { // cutoff to insertion sort, must be >= 1 private static final int INSERTION_SORT_CUTOFF = 8; // This class should not be instantiated. private QuickX() { } /** * Rearranges the array in ascending order, using the natural order. * @param a the array to be sorted */ public static void sort(Comparable[] a) { // StdRandom.shuffle(a); sort(a, 0, a.length - 1); assert isSorted(a); } // quicksort the subarray from a[lo] to a[hi] private static void sort(Comparable[] a, int lo, int hi) { if (hi <= lo) return; // cutoff to insertion sort (Insertion.sort() uses half-open intervals) int n = hi - lo + 1; if (n <= INSERTION_SORT_CUTOFF) { Insertion.sort(a, lo, hi + 1); return; } int j = partition(a, lo, hi); sort(a, lo, j-1); sort(a, j+1, hi); } // partition the subarray a[lo..hi] so that a[lo..j-1] <= a[j] <= a[j+1..hi] // and return the index j. private static int partition(Comparable[] a, int lo, int hi) { int n = hi - lo + 1; int m = median3(a, lo, lo + n/2, hi); exch(a, m, lo); int i = lo; int j = hi + 1; Comparable v = a[lo]; // a[lo] is unique largest element while (less(a[++i], v)) { if (i == hi) { exch(a, lo, hi); return hi; } } // a[lo] is unique smallest element while (less(v, a[--j])) { if (j == lo + 1) return lo; } // the main loop while (i < j) { exch(a, i, j); while (less(a[++i], v)) ; while (less(v, a[--j])) ; } // put partitioning item v at a[j] exch(a, lo, j); // now, a[lo .. j-1] <= a[j] <= a[j+1 .. hi] return j; } // return the index of the median element among a[i], a[j], and a[k] private static int median3(Comparable[] a, int i, int j, int k) { return (less(a[i], a[j]) ? (less(a[j], a[k]) ? j : less(a[i], a[k]) ? k : i) : (less(a[k], a[j]) ? j : less(a[k], a[i]) ? k : i)); } /*************************************************************************** * Helper sorting functions. ***************************************************************************/ // is v < w ? private static boolean less(Comparable v, Comparable w) { return v.compareTo(w) < 0; } // exchange a[i] and a[j] private static void exch(Object[] a, int i, int j) { Object swap = a[i]; a[i] = a[j]; a[j] = swap; } /*************************************************************************** * Check if array is sorted - useful for debugging. ***************************************************************************/ private static boolean isSorted(Comparable[] a) { for (int i = 1; i < a.length; i++) if (less(a[i], a[i-1])) return false; return true; } // print array to standard output private static void show(Comparable[] a) { for (int i = 0; i < a.length; i++) { StdOut.println(a[i]); } } /** * Reads in a sequence of strings from standard input; quicksorts them * (using an optimized version of 2-way quicksort); * and prints them to standard output in ascending order. * * @param args the command-line arguments */ public static void main(String[] args) { String[] a = StdIn.readAllStrings(); QuickX.sort(a); assert isSorted(a); show(a); } }