Below is the syntax highlighted version of QuickUnionPathSplittingUF.java
from §1.5 Case Study: Union-Find.
/****************************************************************************** * Compilation: javac QuickUnionPathSplittingUF.java * Execution: java QuickUnionPathSplittingUF < input.txt * Dependencies: StdIn.java StdOut.java * Data files: https://algs4.cs.princeton.edu/15uf/tinyUF.txt * https://algs4.cs.princeton.edu/15uf/mediumUF.txt * https://algs4.cs.princeton.edu/15uf/largeUF.txt * * Quick-union with path compression via path splitting * (but no weighting by size or rank). * ******************************************************************************/ /** * The {@code QuickUnionPathSplittingUF} class represents a * union–find data structure. * It supports the <em>union</em> and <em>find</em> operations, along with * methods for determining whether two sites are in the same component * and the total number of components. * <p> * This implementation uses quick union (no weighting) with path splitting. * Initializing a data structure with <em>n</em> sites takes linear time. * Afterwards, <em>union</em>, <em>find</em>, and <em>connected</em> take * logarithmic amortized time <em>count</em> takes constant time. * <p> * For additional documentation, see <a href="https://algs4.cs.princeton.edu/15uf">Section 1.5</a> of * <i>Algorithms, 4th Edition</i> by Robert Sedgewick and Kevin Wayne. * * @author Robert Sedgewick * @author Kevin Wayne */ public class QuickUnionPathSplittingUF { private int[] parent; // parent[i] = parent of i private int count; // number of components /** * Initializes an empty union-find data structure with * {@code n} elements {@code 0} through {@code n-1}. * Initially, each element is in its own set. * * @param n the number of elements * @throws IllegalArgumentException if {@code n < 0} */ public QuickUnionPathSplittingUF(int n) { count = n; parent = new int[n]; for (int i = 0; i < n; i++) { parent[i] = i; } } /** * Returns the number of sets. * * @return the number of sets (between {@code 1} and {@code n}) */ public int count() { return count; } /** * Returns the canonical element of the set containing element {@code p}. * * @param p an element * @return the canonical element of the set containing {@code p} * @throws IllegalArgumentException unless {@code 0 <= p < n} */ public int find(int p) { while (p != parent[p]) { int next = parent[p]; parent[p] = parent[next]; // path splitting p = next; } return p; } /** * Returns true if the two elements are in the same set. * * @param p one element * @param q the other element * @return {@code true} if {@code p} and {@code q} are in the same set; * {@code false} otherwise * @throws IllegalArgumentException unless * both {@code 0 <= p < n} and {@code 0 <= q < n} * @deprecated Replace with two calls to {@link #find(int)}. */ @Deprecated public boolean connected(int p, int q) { return find(p) == find(q); } /** * Merges the set containing element {@code p} with the set * containing element {@code q}. * * @param p one element * @param q the other element * @throws IllegalArgumentException unless * both {@code 0 <= p < n} and {@code 0 <= q < n} */ public void union(int p, int q) { int rootP = find(p); int rootQ = find(q); if (rootP == rootQ) return; parent[rootP] = rootQ; count--; } /** * Reads an integer {@code n} and a sequence of pairs of integers * (between {@code 0} and {@code n-1}) from standard input, where each integer * in the pair represents some element; * if the elements are in different sets, merge the two sets * and print the pair to standard output. * * @param args the command-line arguments */ public static void main(String[] args) { int n = StdIn.readInt(); QuickUnionPathSplittingUF uf = new QuickUnionPathSplittingUF(n); while (!StdIn.isEmpty()) { int p = StdIn.readInt(); int q = StdIn.readInt(); if (uf.find(p) == uf.find(q)) continue; uf.union(p, q); StdOut.println(p + " " + q); } StdOut.println(uf.count() + " components"); } }