Below is the syntax highlighted version of ThreeSumFast.java
from §1.4 Analysis of Algorithms.
/****************************************************************************** * Compilation: javac ThreeSumFast.java * Execution: java ThreeSumFast input.txt * Dependencies: StdOut.java In.java Stopwatch.java * Data files: https://algs4.cs.princeton.edu/14analysis/1Kints.txt * https://algs4.cs.princeton.edu/14analysis/2Kints.txt * https://algs4.cs.princeton.edu/14analysis/4Kints.txt * https://algs4.cs.princeton.edu/14analysis/8Kints.txt * https://algs4.cs.princeton.edu/14analysis/16Kints.txt * https://algs4.cs.princeton.edu/14analysis/32Kints.txt * https://algs4.cs.princeton.edu/14analysis/1Mints.txt * * A program with n^2 log n running time. Reads n integers * and counts the number of triples that sum to exactly 0. * * Limitations * ----------- * - we ignore integer overflow * - doesn't handle case when input has duplicates * * * % java ThreeSumFast 1Kints.txt * 70 * * % java ThreeSumFast 2Kints.txt * 528 * * % java ThreeSumFast 4Kints.txt * 4039 * * % java ThreeSumFast 8Kints.txt * 32074 * * % java ThreeSumFast 16Kints.txt * 255181 * * % java ThreeSumFast 32Kints.txt * 2052358 * ******************************************************************************/ import java.util.Arrays; /** * The {@code ThreeSumFast} class provides static methods for counting * and printing the number of triples in an array of distinct integers that * sum to 0 (ignoring integer overflow). * <p> * This implementation uses sorting and binary search and takes time * proportional to n^2 log n, where n is the number of integers. * <p> * For additional documentation, see <a href="https://algs4.cs.princeton.edu/14analysis">Section 1.4</a> of * <i>Algorithms, 4th Edition</i> by Robert Sedgewick and Kevin Wayne. * * @author Robert Sedgewick * @author Kevin Wayne */ public class ThreeSumFast { // Do not instantiate. private ThreeSumFast() { } // returns true if the sorted array a[] contains any duplicated integers private static boolean containsDuplicates(int[] a) { for (int i = 1; i < a.length; i++) if (a[i] == a[i-1]) return true; return false; } /** * Prints to standard output the (i, j, k) with {@code i < j < k} * such that {@code a[i] + a[j] + a[k] == 0}. * * @param a the array of integers * @throws IllegalArgumentException if the array contains duplicate integers */ public static void printAll(int[] a) { int n = a.length; Arrays.sort(a); if (containsDuplicates(a)) throw new IllegalArgumentException("array contains duplicate integers"); for (int i = 0; i < n; i++) { for (int j = i+1; j < n; j++) { int k = Arrays.binarySearch(a, -(a[i] + a[j])); if (k > j) StdOut.println(a[i] + " " + a[j] + " " + a[k]); } } } /** * Returns the number of triples (i, j, k) with {@code i < j < k} * such that {@code a[i] + a[j] + a[k] == 0}. * * @param a the array of integers * @return the number of triples (i, j, k) with {@code i < j < k} * such that {@code a[i] + a[j] + a[k] == 0} */ public static int count(int[] a) { int n = a.length; Arrays.sort(a); if (containsDuplicates(a)) throw new IllegalArgumentException("array contains duplicate integers"); int count = 0; for (int i = 0; i < n; i++) { for (int j = i+1; j < n; j++) { int k = Arrays.binarySearch(a, -(a[i] + a[j])); if (k > j) count++; } } return count; } /** * Reads in a sequence of distinct integers from a file, specified as a command-line argument; * counts the number of triples sum to exactly zero; prints out the time to perform * the computation. * * @param args the command-line arguments */ public static void main(String[] args) { In in = new In(args[0]); int[] a = in.readAllInts(); int count = count(a); StdOut.println(count); } }