Below is the syntax highlighted version of RotatedSortedArray.java
from §1.4 Analysis of Algorithms.
/****************************************************************************** * Compilation: javac RotatedSortedArray.java * Execution: java RotatedSortedArray N * Dependencies: StdOut.java * * Find the a key in a rotated sorted array of N distinct keys. * * We provide two algorithms that solve the problem in logarithmic time. * * - The first algorithm begins by finding the amount k by which the * original sorted array was rotated using a variant of binary search. * This divides the array into two sorted subarrays b[0..k) and b[k..N). * Then, it searches for the key using standard binary search in * one of the two subarrays. * * - The second algorithms search for the key x without directly finding * the crossover point, using a variant of binary search. * * Note: it is crucial that the array has distinct keys. Otherwise, the * problem cannot be solved in logarithmic time (consider an array of * all 0s and one 1 in the interior). * ******************************************************************************/ import java.util.Arrays; public class RotatedSortedArray { // rotate the array k to the right public static int[] rotate(int[] a, int k) { int N = a.length; if (k < 0 || k >= N) throw new RuntimeException("illegal value of k"); int[] b = new int[N]; for (int i = 0; i < N; i++) { b[i] = a[(i - k + N) % N]; } return b; } // sorted array of length N containing 1, 3, 5, ..., 2N-1 public static int[] sortedArray(int N) { int[] a = new int[N]; for (int i = 0; i < N; i++) { a[i] = 2*i + 1; } return a; } // is x in the sorted array a[]? public static boolean searchInSortedArray(int[] a, int x) { return Arrays.binarySearch(a, x) >= 0; } // return index k of smallest key (unique index for which b[k] < b[k-1]) private static int findMinimumIndex(int[] b) { int N = b.length; if (N <= 1) return 0; // array of length 0 or 1 if (b[0] < b[N-1]) return 0; // already sorted // invariant b[lo] > b[hi] int lo = 0, hi = N-1; while (true) { if (hi == lo+1) return hi; int mid = lo + (hi - lo) / 2; if (b[mid] < b[hi]) hi = mid; else if (b[mid] > b[hi]) lo = mid; } } // is x in the rotated sorted array b[]? public static boolean searchInRotatedSortedArray1(int[] b, int x) { int N = b.length; int k = findMinimumIndex(b); if (k == 0) return Arrays.binarySearch(b, x) >= 0; else if (x >= b[0]) return Arrays.binarySearch(b, 0, k, x) >= 0; else return Arrays.binarySearch(b, k, N, x) >= 0; } // is x in the rotated sorted array b[]? public static boolean searchInRotatedSortedArray2(int[] b, int x) { int N = b.length; int lo = 0, hi = N-1; while (true) { if (hi < lo) return false; int mid = lo + (hi - lo) / 2; if (b[mid] == x) return true; if (b[lo] <= x && x < b[mid]) return Arrays.binarySearch(b, lo, mid, x) >= 0; else if (b[mid] < x && x <= b[hi]) return Arrays.binarySearch(b, mid+1, hi+1, x) >= 0; else if (b[mid] < b[hi]) hi = mid - 1; else lo = mid + 1; } } public static void main(String[] args) { int N = Integer.parseInt(args[0]); int[] a = sortedArray(N); // test all rotations for (int k = 0; k < N; k++) { int[] b = rotate(a, k); // test all search keys for (int x = 0; x <= 2*N; x++) { boolean result = searchInSortedArray(a, x); boolean result1 = searchInRotatedSortedArray1(b, x); boolean result2 = searchInRotatedSortedArray2(b, x); if ((result != result1) || (result != result2)) { StdOut.println(" - a[] = "); StdOut.print(" "); for (int i = 0; i < N; i++) StdOut.printf("%2d ", a[i]); StdOut.println(); StdOut.println(" - k = " + k); StdOut.println(" - b[] = "); StdOut.print(" "); for (int i = 0; i < N; i++) StdOut.printf("%2d ", b[i]); StdOut.println(); StdOut.println(" - x = " + x); StdOut.println(" - searchInSortedArray(a, x) = " + result); StdOut.println(" - searchInRotatedSortedArray1(b, x) = " + result1); StdOut.println(" - searchInRotatedSortedArray2(b, x) = " + result2); StdOut.println(); } } } } }