Below is the syntax highlighted version of MemoryOfStacks.java
from §1.3 Stacks and Queues.
/****************************************************************************** * Compilation: javac -cp .:classmexer.jar MemoryOfStacks.java * Execution: java -cp .:classmexer.jar -XX:-UseCompressedOops -javaagent:classmexer.jar MemoryOfStacks * Dependencies: classmexer.jar LinearRegression.java StackOfInts.java * StackOfIntegers.java Stack.java Queue.java Bag.java ResizingArrayStack.java * * Note: the Integer values -128 to 127 are typically cached once created. * * % java -cp .:classmexer.jar -XX:-UseCompressedOops -javaagent:classmexer.jar MemoryOfStacks * size of Integer = 24 * Stack of n null references = 40.00 n + 32.00 (R^2 = 1.000) * Queue of n null references = 40.00 n + 40.00 (R^2 = 1.000) * Bag of n null references = 40.00 n + 32.00 (R^2 = 1.000) * Stack<Integer> of size n = 64.00 n + 32.00 (R^2 = 1.000) * StackOfInts of size n = 32.00 n + 32.00 (R^2 = 1.000) * BagOfInts of size n (min) = 4.00 n + 56.00 (R^2 = 1.000) * BagOfInts of size n (max) = 8.00 n + 48.00 (R^2 = 1.000) * StackOfIntegers of size n = 56.00 n + 32.00 (R^2 = 1.000) * ResizingArrayStack of n null references (min) = 8.00 n + 56.00 (R^2 = 1.000) * ResizingArrayStack of n null references (max) = 32.00 n + 24.00 (R^2 = 1.000) * ResizingArrayQueue of n null references (min) = 8.00 n + 64.00 (R^2 = 1.000) * ResizingArrayQueue of n null references (max) = 32.00 n + 32.00 (R^2 = 1.000) * ResizingArrayBag of n null references (min) = 8.00 n + 56.00 (R^2 = 1.000) * ResizingArrayBag of n null references (max) = 16.00 n + 40.00 (R^2 = 1.000) * * % java -cp .:classmexer.jar -XX:+UseCompressedOops -javaagent:classmexer.jar MemoryOfStacks * size of Integer = 16 * Stack of n null references = 24.00 N + 24.00 (R^2 = 1.000) * Queue of n null references = 24.00 N + 24.00 (R^2 = 1.000) * Bag of n null references = 24.00 N + 24.00 (R^2 = 1.000) * Stack<Integer> of size n = 40.00 N + 24.00 (R^2 = 1.000) * StackOfInts of size n = 24.00 N + 24.00 (R^2 = 1.000) * BagOfInts of size n (min) = 4.00 N + 40.00 (R^2 = 1.000) * BagOfInts of size n (max) = 8.00 N + 32.00 (R^2 = 1.000) * StackOfIntegers of size n = 40.00 N + 24.00 (R^2 = 1.000) * ResizingArrayStack of n null references (min) = 4.00 n + 40.00 (R^2 = 1.000) * ResizingArrayStack of n null references (max) = 16.00 n + 24.00 (R^2 = 1.000) * ResizingArrayQueue of n null references (min) = 4.00 n + 48.00 (R^2 = 1.000) * ResizingArrayQueue of n null references (max) = 16.00 n + 32.00 (R^2 = 1.000) * ResizingArrayBag of n null references (min) = 4.00 n + 40.00 (R^2 = 1.000) * ResizingArrayBag of n null references (max) = 8.00 n + 32.00 (R^2 = 1.000) * * Remark: we fill up the stacks, queues, and bags with null references * to avoid charging the data structure for the memory of the items * themselves. * ******************************************************************************/ import com.javamex.classmexer.MemoryUtil; public class MemoryOfStacks { public static void nullStack() { int[] sizes = { 64, 128, 192, 256, 320, 384, 448, 512, 576, 640, 704, 768, 832, 896, 960, 1024 }; int m = sizes.length; double[] x = new double[m]; double[] memory = new double[m]; for (int i = 0; i < m; i++) { int n = sizes[i]; Stack<Integer> stack = new Stack<Integer>(); for (int j = 0; j < n; j++) stack.push(null); x[i] = stack.size(); memory[i] = MemoryUtil.deepMemoryUsageOf(stack); } LinearRegression regression = new LinearRegression(x, memory); StdOut.println("Stack of n null references = " + regression); } public static void integerStack() { int[] sizes = { 64, 128, 192, 256, 320, 384, 448, 512, 576, 640, 704, 768, 832, 896, 960, 1024 }; int m = sizes.length; double[] x = new double[m]; double[] memory = new double[m]; for (int i = 0; i < m; i++) { int n = sizes[i]; Stack<Integer> stack = new Stack<Integer>(); for (int j = 0; j < n; j++) stack.push(128 + StdRandom.uniformInt(100000)); x[i] = stack.size(); memory[i] = MemoryUtil.deepMemoryUsageOf(stack); } LinearRegression regression = new LinearRegression(x, memory); StdOut.println("Stack<Integer> of size n = " + regression); } public static void bagOfInts() { // must be power of 2 to make array maximally utilized int[] sizes = { 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192 }; int m = sizes.length; double[] x = new double[m]; double[] memory = new double[m]; // maximally utilized for (int i = 0; i < m; i++) { int n = sizes[i]; BagOfInts bag1 = new BagOfInts(); for (int j = 0; j < n; j++) bag1.add(j); x[i] = bag1.size(); memory[i] = MemoryUtil.deepMemoryUsageOf(bag1); } LinearRegression regression1 = new LinearRegression(x, memory); StdOut.println("BagOfInts of size n (min) = " + regression1); // minimally utilized for (int i = 0; i < m; i++) { int n = sizes[i]; BagOfInts bag2 = new BagOfInts(); for (int j = 0; j <= n; j++) bag2.add(j); x[i] = bag2.size(); memory[i] = MemoryUtil.deepMemoryUsageOf(bag2); } LinearRegression regression2 = new LinearRegression(x, memory); StdOut.println("BagOfInts of size n (max) = " + regression2); } public static void stackOfInts() { int[] sizes = { 64, 128, 192, 256, 320, 384, 448, 512, 576, 640, 704, 768, 832, 896, 960, 1024 }; int m = sizes.length; double[] x = new double[m]; double[] memory = new double[m]; for (int i = 0; i < m; i++) { int n = sizes[i]; StackOfInts stack = new StackOfInts(); for (int j = 0; j < n; j++) stack.push(128 + StdRandom.uniformInt(100000)); x[i] = stack.size(); memory[i] = MemoryUtil.deepMemoryUsageOf(stack); } LinearRegression regression = new LinearRegression(x, memory); StdOut.println("StackOfInts of size n = " + regression); } public static void stackOfIntegers() { int[] sizes = { 64, 128, 192, 256, 320, 384, 448, 512, 576, 640, 704, 768, 832, 896, 960, 1024 }; int m = sizes.length; double[] x = new double[m]; double[] memory = new double[m]; for (int i = 0; i < m; i++) { int n = sizes[i]; StackOfIntegers stack = new StackOfIntegers(); for (int j = 0; j < n; j++) stack.push(128 + StdRandom.uniformInt(100000)); x[i] = stack.size(); memory[i] = MemoryUtil.deepMemoryUsageOf(stack); } LinearRegression regression = new LinearRegression(x, memory); StdOut.println("StackOfIntegers of size n = " + regression); } public static void nullQueue() { int[] sizes = { 64, 128, 192, 256, 320, 384, 448, 512, 576, 640, 704, 768, 832, 896, 960, 1024 }; int m = sizes.length; double[] x = new double[m]; double[] memory = new double[m]; for (int i = 0; i < m; i++) { int n = sizes[i]; Queue<Integer> queue = new Queue<Integer>(); for (int j = 0; j < n; j++) queue.enqueue(null); x[i] = queue.size(); memory[i] = MemoryUtil.deepMemoryUsageOf(queue); } LinearRegression regression = new LinearRegression(x, memory); StdOut.println("Queue of n null references = " + regression); } public static void nullBag() { int[] sizes = { 64, 128, 192, 256, 320, 384, 448, 512, 576, 640, 704, 768, 832, 896, 960, 1024 }; int m = sizes.length; double[] x = new double[m]; double[] memory = new double[m]; for (int i = 0; i < m; i++) { int n = sizes[i]; Bag<Integer> bag = new Bag<Integer>(); for (int j = 0; j < n; j++) bag.add(null); x[i] = bag.size(); memory[i] = MemoryUtil.deepMemoryUsageOf(bag); } LinearRegression regression = new LinearRegression(x, memory); StdOut.println("Bag of n null references = " + regression); } public static void resizingArrayNullStack() { // must be power of 2 to make array maximally utilized int[] sizes = { 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192 }; int m = sizes.length; double[] x = new double[m]; double[] memory = new double[m]; // maximally utilized for (int i = 0; i < m; i++) { int n = sizes[i]; ResizingArrayStack<Integer> stack1 = new ResizingArrayStack<Integer>(); for (int j = 0; j < n; j++) stack1.push(null); x[i] = stack1.size(); memory[i] = MemoryUtil.deepMemoryUsageOf(stack1); } LinearRegression regression1 = new LinearRegression(x, memory); StdOut.println("ResizingArrayStack of n null references (min) = " + regression1); // minimally utilized for (int i = 0; i < m; i++) { int n = sizes[i]; ResizingArrayStack<Integer> stack2 = new ResizingArrayStack<Integer>(); for (int j = 0; j < n; j++) stack2.push(null); for (int j = 0; j < 3*n/4 - 1; j++) stack2.pop(); x[i] = stack2.size(); memory[i] = MemoryUtil.deepMemoryUsageOf(stack2); } LinearRegression regression2 = new LinearRegression(x, memory); StdOut.println("ResizingArrayStack of n null references (max) = " + regression2); } public static void resizingArrayNullQueue() { // must be power of 2 to make array maximally utilized int[] sizes = { 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192 }; int m = sizes.length; double[] x = new double[m]; double[] memory = new double[m]; // maximally utilized for (int i = 0; i < m; i++) { int n = sizes[i]; ResizingArrayQueue<Integer> queue1 = new ResizingArrayQueue<Integer>(); for (int j = 0; j < n; j++) queue1.enqueue(null); x[i] = queue1.size(); memory[i] = MemoryUtil.deepMemoryUsageOf(queue1); } LinearRegression regression1 = new LinearRegression(x, memory); StdOut.println("ResizingArrayQueue of n null references (min) = " + regression1); // minimally utilized for (int i = 0; i < m; i++) { int n = sizes[i]; ResizingArrayQueue<Integer> queue2 = new ResizingArrayQueue<Integer>(); for (int j = 0; j < n; j++) queue2.enqueue(null); for (int j = 0; j < 3*n/4 - 1; j++) queue2.dequeue(); x[i] = queue2.size(); memory[i] = MemoryUtil.deepMemoryUsageOf(queue2); } LinearRegression regression2 = new LinearRegression(x, memory); StdOut.println("ResizingArrayQueue of n null references (max) = " + regression2); } public static void resizingArrayNullBag() { // must be power of 2 to make array maximally utilized int[] sizes = { 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192 }; int m = sizes.length; double[] x = new double[m]; double[] memory = new double[m]; // maximally utilized for (int i = 0; i < m; i++) { int n = sizes[i]; ResizingArrayBag<Integer> bag1 = new ResizingArrayBag<Integer>(); for (int j = 0; j < n; j++) bag1.add(null); x[i] = bag1.size(); memory[i] = MemoryUtil.deepMemoryUsageOf(bag1); } LinearRegression regression1 = new LinearRegression(x, memory); StdOut.println("ResizingArrayBag of n null references (min) = " + regression1); // minimally utilized for (int i = 0; i < m; i++) { int n = sizes[i]; ResizingArrayBag<Integer> bag2 = new ResizingArrayBag<Integer>(); for (int j = 0; j <= n; j++) bag2.add(null); x[i] = bag2.size(); memory[i] = MemoryUtil.deepMemoryUsageOf(bag2); } LinearRegression regression2 = new LinearRegression(x, memory); StdOut.println("ResizingArrayBag of n null references (max) = " + regression2); } public static void main(String[] args) { Integer x = new Integer(123456); StdOut.println("size of Integer = " + MemoryUtil.memoryUsageOf(x)); nullStack(); nullQueue(); nullBag(); integerStack(); stackOfInts(); bagOfInts(); stackOfIntegers(); resizingArrayNullStack(); resizingArrayNullQueue(); resizingArrayNullBag(); } }