4.4 **Shortest Paths**

- APIs
- *shortest-paths properties*
- *Dijkstra's algorithm*
- *edge-weighted DAGs*
- *negative weights*
Shortest paths in an edge-weighted digraph

Given an edge-weighted digraph, find the shortest path from s to t.

![Edge-weighted digraph](image)

Shortest path from 0 to 6
- 0->2 0.26
- 2->7 0.34
- 7->3 0.39
- 3->6 0.52

Edge-weighted digraph
- 4->5 0.35
- 5->4 0.35
- 4->7 0.37
- 5->7 0.28
- 7->5 0.28
- 5->1 0.32
- 0->4 0.38
- 0->2 0.26
- 7->3 0.39
- 1->3 0.29
- 2->7 0.34
- 6->2 0.40
- 3->6 0.52
- 6->0 0.58
- 6->4 0.93
Google maps
Shortest path applications

- PERT/CPM.
- Map routing.
- Seam carving.
- Texture mapping.
- Robot navigation.
- Typesetting in TeX.
- Urban traffic planning.
- Optimal pipelining of VLSI chip.
- Telemarketer operator scheduling.
- Routing of telecommunications messages.
- Network routing protocols (OSPF, BGP, RIP).
- Exploiting arbitrage opportunities in currency exchange.
- Optimal truck routing through given traffic congestion pattern.

Shortest path variants

Which vertices?

- **Single source**: from one vertex \(s \) to every other vertex.
- Single sink: from every vertex to one vertex \(t \).
- Source-sink: from one vertex \(s \) to another \(t \).
- All pairs: between all pairs of vertices.

Restrictions on edge weights?

- Nonnegative weights.
- Euclidean weights.
- Arbitrary weights.

Cycles?

- No directed cycles.
- No "negative cycles."

Simplifying assumption. Shortest paths from \(s \) to each vertex \(v \) exist.
4.4 Shortest Paths

- APIs
 - shortest-paths properties
 - Dijkstra's algorithm
 - edge-weighted DAGs
 - negative weights
Weighted directed edge API

```java
public class DirectedEdge

DirectedEdge(int v, int w, double weight)  // weighted edge v→w
    int from()  // vertex v
    int to()  // vertex w
    double weight()  // weight of this edge
    String toString()  // string representation

Idiom for processing an edge e: int v = e.from(), w = e.to();
```
Weighted directed edge: implementation in Java

Similar to Edge for undirected graphs, but a bit simpler.

```java
public class DirectedEdge {
    private final int v, w;
    private final double weight;

    public DirectedEdge(int v, int w, double weight) {
        this.v = v;
        this.w = w;
        this.weight = weight;
    }

    public int from() {
        return v;
    }

    public int to() {
        return w;
    }

    public int weight() {
        return weight;
    }
}
```

from() and to() replace either() and other()
Edge-weighted digraph API

```java
public class EdgeWeightedDigraph {

    EdgeWeightedDigraph(int V)  // edge-weighted digraph with V vertices
    EdgeWeightedDigraph(In in)  // edge-weighted digraph from input stream

    void addEdge(DirectedEdge e)  // add weighted directed edge e

    Iterable<DirectedEdge> adj(int v)  // edges pointing from v

    int V()  // number of vertices

    int E()  // number of edges

    Iterable<DirectedEdge> edges()  // all edges

    String toString()  // string representation
```

Conventions. Allow self-loops and parallel edges.
Edge-weighted digraph: adjacency-lists representation
Edge-weighted digraph: adjacency-lists implementation in Java

Same as EdgeWeightedGraph except replace Graph with Digraph.

```java
public class EdgeWeightedDigraph {
    private final int V;
    private final Bag<DirectedEdge>[] adj;

    public EdgeWeightedDigraph(int V) {
        this.V = V;
        adj = (Bag<DirectedEdge>[]) new Bag[V];
        for (int v = 0; v < V; v++)
            adj[v] = new Bag<DirectedEdge>();
    }

    public void addEdge(DirectedEdge e) {
        int v = e.from();
        adj[v].add(e);
    }

    public Iterable<DirectedEdge> adj(int v) {
        return adj[v];
    }
}
```

add edge $e = v \rightarrow w$ to only v's adjacency list
Single-source shortest paths API

Goal. Find the shortest path from s to every other vertex.

```java
class SP {
    SP(EdgeWeightedDigraph G, int s) {
        shortest paths from s in graph G
        double distTo(int v) {
            length of shortest path from s to v
        }
        Iterable <DirectedEdge> pathTo(int v) {
            shortest path from s to v
        }
        boolean hasPathTo(int v) {
            is there a path from s to v?
        }
    }
}
```

```java
SP sp = new SP(G, s);
for (int v = 0; v < G.V(); v++)
{
    StdOut.printf("%d to %d (%.2f): ", s, v, sp.distTo(v));
    for (DirectedEdge e : sp.pathTo(v))
        StdOut.print(e + " ");
    StdOut.println();
}
```
Single-source shortest paths API

Goal. Find the shortest path from s to every other vertex.

```java
public class SP

SP(EdgeWeightedDigraph G, int s) // shortest paths from s in graph G

double distTo(int v) // length of shortest path from s to v

Iterable<DirectedEdge> pathTo(int v) // shortest path from s to v

boolean hasPathTo(int v) // is there a path from s to v?
```

% java SP tinyEWD.txt 0
0 to 0 (0.00):
0 to 1 (1.05): 0->4 0.38 4->5 0.35 5->1 0.32
0 to 2 (0.26): 0->2 0.26
0 to 3 (0.99): 0->2 0.26 2->7 0.34 7->3 0.39
0 to 4 (0.38): 0->4 0.38
0 to 5 (0.73): 0->4 0.38 4->5 0.35
0 to 6 (1.51): 0->2 0.26 2->7 0.34 7->3 0.39 3->6 0.52
0 to 7 (0.60): 0->2 0.26 2->7 0.34
4.4 **Shortest Paths**

- APIs
- *shortest-paths properties*
- *Dijkstra’s algorithm*
- edge-weighted DAGs
- negative weights
Data structures for single-source shortest paths

Goal. Find the shortest path from \(s \) to every other vertex.

Observation. A *shortest-paths tree* (SPT) solution exists. Why?

Consequence. Can represent the SPT with two vertex-indexed arrays:

- \(\text{distTo}[v] \) is length of shortest path from \(s \) to \(v \).
- \(\text{edgeTo}[v] \) is last edge on shortest path from \(s \) to \(v \).
Data structures for single-source shortest paths

Goal. Find the shortest path from s to every other vertex.

Observation. A shortest-paths tree (SPT) solution exists. Why?

Consequence. Can represent the SPT with two vertex-indexed arrays:

- $\text{distTo}[v]$ is length of shortest path from s to v.
- $\text{edgeTo}[v]$ is last edge on shortest path from s to v.

```java
public double distTo(int v)
{
    return distTo[v];
}

public Iterable<DirectedEdge> pathTo(int v)
{
    Stack<DirectedEdge> path = new Stack<DirectedEdge>();
    for (DirectedEdge e = edgeTo[v]; e != null; e = edgeTo[e.from()])
        path.push(e);
    return path;
}
```
Relax edge $e = v \rightarrow w$.

- $\text{distTo}[v]$ is length of shortest known path from s to v.
- $\text{distTo}[w]$ is length of shortest known path from s to w.
- $\text{edgeTo}[w]$ is last edge on shortest known path from s to w.
- If $e = v \rightarrow w$ gives shorter path to w through v, update both $\text{distTo}[w]$ and $\text{edgeTo}[w]$.

$v \rightarrow w$ successfully relaxes
Edge relaxation

Relax edge $e = v \rightarrow w$.

- $\text{distTo}[v]$ is length of shortest known path from s to v.
- $\text{distTo}[w]$ is length of shortest known path from s to w.
- $\text{edgeTo}[w]$ is last edge on shortest known path from s to w.
- If $e = v \rightarrow w$ gives shorter path to w through v, update both $\text{distTo}[w]$ and $\text{edgeTo}[w]$.

```java
private void relax(DirectedEdge e) {
    int v = e.from(), w = e.to();
    if (distTo[w] > distTo[v] + e.weight()) {
        distTo[w] = distTo[v] + e.weight();
        edgeTo[w] = e;
    }
}
```
Shortest-paths optimality conditions

Proposition. Let G be an edge-weighted digraph. Then $\text{distTo}[]$ are the shortest path distances from s iff:

- $\text{distTo}[s] = 0$.
- For each vertex v, $\text{distTo}[v]$ is the length of some path from s to v.
- For each edge $e = v \rightarrow w$, $\text{distTo}[w] \leq \text{distTo}[v] + e.\text{weight()}$.

Pf. \Leftarrow [necessary]

- Suppose that $\text{distTo}[w] > \text{distTo}[v] + e.\text{weight()}$ for some edge $e = v \rightarrow w$.
- Then, e gives a path from s to w (through v) of length less than $\text{distTo}[w]$.
Shortest-paths optimality conditions

Proposition. Let G be an edge-weighted digraph.
Then $\text{distTo}[]$ are the shortest path distances from s iff:

- $\text{distTo}[s] = 0$.
- For each vertex v, $\text{distTo}[v]$ is the length of some path from s to v.
- For each edge $e = v \rightarrow w$, $\text{distTo}[w] \leq \text{distTo}[v] + e.\text{weight}()$.

Pf. \Rightarrow [sufficient]

- Suppose that $s = v_0 \rightarrow v_1 \rightarrow v_2 \rightarrow \ldots \rightarrow v_k = w$ is a shortest path from s to w.
- Then, $\text{distTo}[v_1] \leq \text{distTo}[v_0] + e_1.\text{weight}()$.
 $\text{distTo}[v_2] \leq \text{distTo}[v_1] + e_2.\text{weight}()$
 \ldots
 $\text{distTo}[v_k] \leq \text{distTo}[v_{k-1}] + e_k.\text{weight}()$

- Add inequalities; simplify; and substitute $\text{distTo}[v_0] = \text{distTo}[s] = 0$:
 $\text{distTo}[w] = \text{distTo}[v_k] \leq e_1.\text{weight}() + e_2.\text{weight}() + \ldots + e_k.\text{weight}()$

- Thus, $\text{distTo}[w]$ is the weight of shortest path to w. ■
Generic shortest-paths algorithm

Generic algorithm (to compute SPT from s)

Initialize $\text{distTo}[s] = 0$ and $\text{distTo}[v] = \infty$ for all other vertices.

Repeat until optimality conditions are satisfied:
 - Relax any edge.

Proposition. Generic algorithm computes SPT (if it exists) from s.

Pf sketch.

- The entry $\text{distTo}[v]$ is always the length of a simple path from s to v.
- Each successful relaxation decreases $\text{distTo}[v]$ for some v.
- The entry $\text{distTo}[v]$ can decrease at most a finite number of times. ■
Generic shortest-paths algorithm

Generic algorithm (to compute SPT from s)

- Initialize distTo[s] = 0 and distTo[v] = ∞ for all other vertices.

- Repeat until optimality conditions are satisfied:
 - Relax any edge.

Efficient implementations. How to choose which edge to relax?

Ex 1. Dijkstra's algorithm (nonnegative weights).

Ex 2. Topological sort algorithm (no directed cycles).

Ex 3. Bellman-Ford algorithm (no negative cycles).
4.4 Shortest Paths

- APIs
- shortest-paths properties
- Dijkstra's algorithm
- edge-weighted DAGs
- negative weights
“Do only what only you can do.”

“In their capacity as a tool, computers will be but a ripple on the surface of our culture. In their capacity as intellectual challenge, they are without precedent in the cultural history of mankind.”

“The use of COBOL cripples the mind; its teaching should, therefore, be regarded as a criminal offence.”

“It is practically impossible to teach good programming to students that have had a prior exposure to BASIC: as potential programmers they are mentally mutilated beyond hope of regeneration.”

“APL is a mistake, carried through to perfection. It is the language of the future for the programming techniques of the past: it creates a new generation of coding bums.”
"Object-oriented programming is an exceptionally bad idea which could only have originated in California."

-- Edsger Dijkstra
Dijkstra's algorithm demo

- Consider vertices in increasing order of distance from \(s \) (non-tree vertex with the lowest \(\text{distTo[]} \) value).
- Add vertex to tree and relax all edges pointing from that vertex.

\[\begin{align*}
\text{Edges} & \quad \text{Weight} \\
0 \to 1 & \quad 5.0 \\
0 \to 4 & \quad 9.0 \\
0 \to 7 & \quad 8.0 \\
1 \to 2 & \quad 12.0 \\
1 \to 3 & \quad 15.0 \\
1 \to 7 & \quad 4.0 \\
2 \to 3 & \quad 3.0 \\
2 \to 6 & \quad 11.0 \\
3 \to 6 & \quad 9.0 \\
4 \to 5 & \quad 4.0 \\
4 \to 6 & \quad 20.0 \\
4 \to 7 & \quad 5.0 \\
5 \to 2 & \quad 1.0 \\
5 \to 6 & \quad 13.0 \\
7 \to 5 & \quad 6.0 \\
7 \to 2 & \quad 7.0 \\
\end{align*} \]
Dijkstra's algorithm demo

- Consider vertices in increasing order of distance from s (non-tree vertex with the lowest \texttt{distTo[]} value).
- Add vertex to tree and relax all edges pointing from that vertex.

\begin{table}[h]
\centering
\begin{tabular}{ccc}
\hline
v & \texttt{distTo[]} & \texttt{edgeTo[]} \\
\hline
0 & 0.0 & - \\
1 & 5.0 & 0→1 \\
2 & 14.0 & 5→2 \\
3 & 17.0 & 2→3 \\
4 & 9.0 & 0→4 \\
5 & 13.0 & 4→5 \\
6 & 25.0 & 2→6 \\
7 & 8.0 & 0→7 \\
\hline
\end{tabular}
\end{table}

shortest-paths tree from vertex s
Dijkstra's algorithm visualization
Dijkstra's algorithm visualization
Dijkstra's algorithm: correctness proof

Proposition. Dijkstra's algorithm computes a SPT in any edge-weighted digraph with nonnegative weights.

Pf.

- Each edge $e = v \rightarrow w$ is relaxed exactly once (when vertex v is relaxed), leaving $\text{distTo}[w] \leq \text{distTo}[v] + \text{e.weight}()$.
- Inequality holds until algorithm terminates because:
 - $\text{distTo}[w]$ cannot increase \quad \text{distTo[] values are monotone decreasing}
 - $\text{distTo}[v]$ will not change \quad \text{we choose lowest distTo[] value at each step (and edge weights are nonnegative)}

- Thus, upon termination, shortest-paths optimality conditions hold. ■
Dijkstra's algorithm: Java implementation

```java
public class DijkstraSP {
    private DirectedEdge[] edgeTo;
    private double[] distTo;
    private IndexMinPQ<Double> pq;

    public DijkstraSP(EdgeWeightedDigraph G, int s) {
        edgeTo = new DirectedEdge[G.V()];
        distTo = new double[G.V()];
        pq = new IndexMinPQ<Double>(G.V());

        for (int v = 0; v < G.V(); v++)
            distTo[v] = Double.POSITIVE_INFINITY;
        distTo[s] = 0.0;

        pq.insert(s, 0.0);
        while (!pq.isEmpty()) {
            int v = pq.delMin();
            for (DirectedEdge e : G.adj(v))
                relax(e);
        }
    }
}
```

relax vertices in order of distance from s
Dijkstra's algorithm: Java implementation

```java
private void relax(DirectedEdge e) {
    int v = e.from(), w = e.to();
    if (distTo[w] > distTo[v] + e.weight()) {
        distTo[w] = distTo[v] + e.weight();
        edgeTo[w] = e;
        if (pq.contains(w)) pq.decreaseKey(w, distTo[w]);
        else pq.insert (w, distTo[w]);
    }
}
```
Dijkstra's algorithm: which priority queue?

Depends on PQ implementation: V insert, V delete-min, E decrease-key.

<table>
<thead>
<tr>
<th>PQ implementation</th>
<th>insert</th>
<th>delete-min</th>
<th>decrease-key</th>
<th>total</th>
</tr>
</thead>
<tbody>
<tr>
<td>unordered array</td>
<td>1</td>
<td>V</td>
<td>1</td>
<td>V^2</td>
</tr>
<tr>
<td>binary heap</td>
<td>$\log V$</td>
<td>$\log V$</td>
<td>$\log V$</td>
<td>$E \log V$</td>
</tr>
<tr>
<td>d–way heap</td>
<td>$\log_d V$</td>
<td>$d \log_d V$</td>
<td>$\log_d V$</td>
<td>$E \log_{E/V} V$</td>
</tr>
<tr>
<td>Fibonacci heap</td>
<td>1†</td>
<td>$\log V$†</td>
<td>1†</td>
<td>$E + V \log V$</td>
</tr>
</tbody>
</table>

† amortized

Bottom line.

- Array implementation optimal for dense graphs.
- Binary heap much faster for sparse graphs.
- 4-way heap worth the trouble in performance-critical situations.
- Fibonacci heap best in theory, but not worth implementing.
Computing a spanning tree in a graph

Dijkstra's algorithm seem familiar?

- Prim's algorithm is essentially the same algorithm.
- Both are in a family of algorithms that compute a spanning tree.

Main distinction: Rule used to choose next vertex for the tree.

- Prim: Closest vertex to the tree (via an undirected edge).
- Dijkstra: Closest vertex to the source (via a directed path).

Note: DFS and BFS are also in this family of algorithms.
4.4 **Shortest Paths**

- APIs
- shortest-paths properties
- Dijkstra's algorithm
- edge-weighted DAGs
- negative weights
Q. Suppose that an edge-weighted digraph has no directed cycles. Is it easier to find shortest paths than in a general digraph?

A. Yes!
Acyclic shortest paths demo

- Consider vertices in topological order.
- Relax all edges pointing from that vertex.

an edge-weighted DAG
Acyclic shortest paths demo

- Consider vertices in topological order.
- Relax all edges pointing from that vertex.

shortest-paths tree from vertex s

<table>
<thead>
<tr>
<th>v</th>
<th>distTo[]</th>
<th>edgeTo[]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.0</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>5.0</td>
<td>0→1</td>
</tr>
<tr>
<td>2</td>
<td>14.0</td>
<td>5→2</td>
</tr>
<tr>
<td>3</td>
<td>17.0</td>
<td>2→3</td>
</tr>
<tr>
<td>4</td>
<td>9.0</td>
<td>0→4</td>
</tr>
<tr>
<td>5</td>
<td>13.0</td>
<td>4→5</td>
</tr>
<tr>
<td>6</td>
<td>25.0</td>
<td>2→6</td>
</tr>
<tr>
<td>7</td>
<td>8.0</td>
<td>0→7</td>
</tr>
</tbody>
</table>
Shortest paths in edge-weighted DAGs

Proposition. Topological sort algorithm computes SPT in any edge-weighted DAG in time proportional to $E + V$.

Pf.

- Each edge $e = v \rightarrow w$ is relaxed exactly once (when vertex v is relaxed), leaving $\text{distTo}[w] \leq \text{distTo}[v] + e.\text{weight}()$.
- Inequality holds until algorithm terminates because:
 - $\text{distTo}[w]$ cannot increase \(\leftarrow\) \text{distTo[]} values are monotone decreasing
 - $\text{distTo}[v]$ will not change \(\leftarrow\) because of topological order, no edge pointing to v will be relaxed after v is relaxed

- Thus, upon termination, shortest-paths optimality conditions hold. ■
public class AcyclicSP
{
 private DirectedEdge[] edgeTo;
 private double[] distTo;

 public AcyclicSP(EdgeWeightedDigraph G, int s)
 {
 edgeTo = new DirectedEdge[G.V()];
 distTo = new double[G.V()];

 for (int v = 0; v < G.V(); v++)
 distTo[v] = Double.POSITIVE_INFINITY;
 distTo[s] = 0.0;

 Topological topological = new Topological(G);
 for (int v : topological.order())
 for (DirectedEdge e : G.adj(v))
 relax(e);
 }
}
Content-aware resizing

Seam carving. [Avidan and Shamir] Resize an image without distortion for display on cell phones and web browsers.

http://www.youtube.com/watch?v=vIFCV2spKtg
Content-aware resizing

Seam carving. [Avidan and Shamir] Resize an image without distortion for display on cell phones and web browsers.

In the wild. Photoshop CS 5, Imagemagick, GIMP, ...
Content-aware resizing

To find vertical seam:

- Grid DAG: vertex = pixel; edge = from pixel to 3 downward neighbors.
- Weight of pixel = energy function of 8 neighboring pixels.
- Seam = shortest path (sum of vertex weights) from top to bottom.
Content-aware resizing

To find vertical seam:

- Grid DAG: vertex = pixel; edge = from pixel to 3 downward neighbors.
- Weight of pixel = energy function of 8 neighboring pixels.
- Seam = shortest path (sum of vertex weights) from top to bottom.
Content-aware resizing

To remove vertical seam:

- Delete pixels on seam (one in each row).
Content-aware resizing

To remove vertical seam:
 • Delete pixels on seam (one in each row).
Longest paths in edge-weighted DAGs

Formulate as a shortest paths problem in edge-weighted DAGs.

- Negate all weights.
- Find shortest paths.
- Negate weights in result.

Key point. Topological sort algorithm works even with negative weights.
Longest paths in edge-weighted DAGs: application

Parallel job scheduling. Given a set of jobs with durations and precedence constraints, schedule the jobs (by finding a start time for each) so as to achieve the minimum completion time, while respecting the constraints.

<table>
<thead>
<tr>
<th>job</th>
<th>duration</th>
<th>must complete before</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>41.0</td>
<td>1 7 9</td>
</tr>
<tr>
<td>1</td>
<td>51.0</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>50.0</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>36.0</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>38.0</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>45.0</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>21.0</td>
<td>3 8</td>
</tr>
<tr>
<td>7</td>
<td>32.0</td>
<td>3 8</td>
</tr>
<tr>
<td>8</td>
<td>32.0</td>
<td>2</td>
</tr>
<tr>
<td>9</td>
<td>29.0</td>
<td>4 6</td>
</tr>
</tbody>
</table>
Critical path method

CPM. To solve a parallel job-scheduling problem, create edge-weighted DAG:

- Source and sink vertices.
- Two vertices (begin and end) for each job.
 - Three edges for each job:
 - begin to end (weighted by duration)
 - source to begin (0 weight)
 - end to sink (0 weight)
 - One edge for each precedence constraint (0 weight).

```plaintext
<table>
<thead>
<tr>
<th>job</th>
<th>duration</th>
<th>must complete before</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>41.0</td>
<td>1 7 9</td>
</tr>
<tr>
<td>1</td>
<td>51.0</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>50.0</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>36.0</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>38.0</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>45.0</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>21.0</td>
<td>3 8</td>
</tr>
<tr>
<td>7</td>
<td>32.0</td>
<td>3 8</td>
</tr>
<tr>
<td>8</td>
<td>32.0</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>29.0</td>
<td>4 6</td>
</tr>
</tbody>
</table>
```

![Graph showing job scheduling and precedence constraints](image)

- Job start
- Job finish
- Duration
- Zero-weight edge to each job start
- Zero-weight edge from each job finish
- Precedence constraint (zero weight)
Critical path method

CPM. Use **longest path** from the source to schedule each job.
4.4 **Shortest Paths**

- APIs
- *shortest-paths properties*
- *Dijkstra's algorithm*
- *edge-weighted DAGs*
- *negative weights*
Shortest paths with negative weights: failed attempts

Dijkstra. Doesn’t work with negative edge weights.

Re-weighting. Add a constant to every edge weight doesn’t work.

Conclusion. Need a different algorithm.
Def. A *negative cycle* is a directed cycle whose sum of edge weights is negative.

Proposition. A SPT exists iff no negative cycles.

assuming all vertices reachable from s
Bellman-Ford algorithm

Initialize distTo[s] = 0 and distTo[v] = ∞ for all other vertices.

Repeat V times:
- Relax each edge.

Bellman-Ford algorithm

```java
for (int i = 0; i < G.V(); i++)
    for (int v = 0; v < G.V(); v++)
        for (DirectedEdge e : G.adj(v))
            relax(e);
```

pass i (relax each edge)
Bellman-Ford algorithm demo

Repeat V times: relax all E edges.

an edge-weighted digraph

0→1 5.0
0→4 9.0
0→7 8.0
1→2 12.0
1→3 15.0
1→7 4.0
2→3 3.0
2→6 11.0
3→6 9.0
4→5 4.0
4→6 20.0
4→7 5.0
5→2 1.0
5→6 13.0
7→5 6.0
7→2 7.0
Bellman-Ford algorithm demo

Repeat V times: relax all E edges.

shortest-paths tree from vertex s
Bellman-Ford algorithm: visualization

passes
4

7

10

13

SPT
Bellman-Ford algorithm: analysis

Bellman–Ford algorithm

Initialize distTo[s] = 0 and distTo[v] = \(\infty\) for all other vertices.
Repeat V times:
 - Relax each edge.

Proposition. Dynamic programming algorithm computes SPT in any edge-weighted digraph with no negative cycles in time proportional to \(E \times V\).

Pf idea. After pass \(i\), found path that is at least as short as any shortest path containing \(i\) (or fewer) edges.
Bellman-Ford algorithm: practical improvement

Observation. If distTo[v] does not change during pass i, no need to relax any edge pointing from v in pass i+1.

FIFO implementation. Maintain queue of vertices whose distTo[] changed.

be careful to keep at most one copy of each vertex on queue (why?)

Overall effect.

• The running time is still proportional to $E \times V$ in worst case.
• But much faster than that in practice.
Single source shortest-paths implementation: cost summary

<table>
<thead>
<tr>
<th>algorithm</th>
<th>restriction</th>
<th>typical case</th>
<th>worst case</th>
<th>extra space</th>
</tr>
</thead>
<tbody>
<tr>
<td>topological sort</td>
<td>no directed cycles</td>
<td>$E + V$</td>
<td>$E + V$</td>
<td>V</td>
</tr>
<tr>
<td>Dijkstra (binary heap)</td>
<td>no negative weights</td>
<td>$E \log V$</td>
<td>$E \log V$</td>
<td>V</td>
</tr>
<tr>
<td>Bellman–Ford</td>
<td>no negative cycles</td>
<td>$E V$</td>
<td>$E V$</td>
<td>V</td>
</tr>
<tr>
<td>Bellman–Ford (queue–based)</td>
<td></td>
<td>$E + V$</td>
<td>$E V$</td>
<td>V</td>
</tr>
</tbody>
</table>

Remark 1. Directed cycles make the problem harder.

Remark 2. Negative weights make the problem harder.

Remark 3. Negative cycles makes the problem intractable.
Finding a negative cycle

Negative cycle. Add two method to the API for SP.

<table>
<thead>
<tr>
<th>boolean</th>
<th>hasNegativeCycle()</th>
<th>is there a negative cycle?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iterable</td>
<td>negativeCycle()</td>
<td>negative cycle reachable from s</td>
</tr>
</tbody>
</table>

An edge-weighted digraph with a negative cycle

digraph

4->5 0.35
5->4 -0.66
4->7 0.37
5->7 0.28
7->5 0.28
5->1 0.32
0->4 0.38
0->2 0.26
7->3 0.39
1->3 0.29
2->7 0.34
6->2 0.40
3->6 0.52
6->0 0.58
6->4 0.93

negative cycle (-0.66 + 0.37 + 0.28)

5->4->7->5...->1->3->6

shortest path from 0 to 6

Image of the digraph with the negative cycle highlighted.
Finding a negative cycle

Observation. If there is a negative cycle, Bellman-Ford gets stuck in loop, updating distTo[] and edgeTo[] entries of vertices in the cycle.

![Graph with negative cycle]

Proposition. If any vertex \(v \) is updated in pass \(v \), there exists a negative cycle (and can trace back edgeTo[\(v \)] entries to find it).

In practice. Check for negative cycles more frequently.
Negative cycle application: arbitrage detection

Problem. Given table of exchange rates, is there an arbitrage opportunity?

<table>
<thead>
<tr>
<th></th>
<th>USD</th>
<th>EUR</th>
<th>GBP</th>
<th>CHF</th>
<th>CAD</th>
</tr>
</thead>
<tbody>
<tr>
<td>USD</td>
<td>1</td>
<td>0.741</td>
<td>0.657</td>
<td>1.061</td>
<td>1.011</td>
</tr>
<tr>
<td>EUR</td>
<td>1.350</td>
<td>1</td>
<td>0.888</td>
<td>1.433</td>
<td>1.366</td>
</tr>
<tr>
<td>GBP</td>
<td>1.521</td>
<td>1.126</td>
<td>1</td>
<td>1.614</td>
<td>1.538</td>
</tr>
<tr>
<td>CHF</td>
<td>0.943</td>
<td>0.698</td>
<td>0.620</td>
<td>1</td>
<td>0.953</td>
</tr>
<tr>
<td>CAD</td>
<td>0.995</td>
<td>0.732</td>
<td>0.650</td>
<td>1.049</td>
<td>1</td>
</tr>
</tbody>
</table>

Ex. $1,000 ⇒ 741 Euros ⇒ 1,012.206 Canadian dollars ⇒ $1,007.14497.

$1000 \times 0.741 \times 1.366 \times 0.995 = 1007.14497$
Negative cycle application: arbitrage detection

Currency exchange graph.

- Vertex = currency.
- Edge = transaction, with weight equal to exchange rate.
- Find a directed cycle whose product of edge weights is > 1.

Challenge. Express as a negative cycle detection problem.
Negative cycle application: arbitrage detection

Model as a negative cycle detection problem by taking logs.
- Let weight of edge \(v \rightarrow w \) be \(-\ln\) (exchange rate from currency \(v \) to \(w \)).
- Multiplication turns to addition; \(> 1 \) turns to \(< 0 \).
- Find a directed cycle whose sum of edge weights is \(< 0 \) (negative cycle).

\[
\begin{align*}
-\ln(.741) & \quad -\ln(1.366) & \quad -\ln(.995) \\
.2998 & \quad -.3119 & \quad .0050 = -.0071
\end{align*}
\]

Remark. Fastest algorithm is extraordinarily valuable!
Shortest paths summary

Nonnegative weights.
- Arises in many application.
- Dijkstra's algorithm is nearly linear-time.

Acyclic edge-weighted digraphs.
- Arise in some applications.
- Topological sort algorithm is linear time.
- Edge weights can be negative.

Negative weights and negative cycles.
- Arise in some applications.
- If no negative cycles, can find shortest paths via Bellman-Ford.
- If negative cycles, can find one via Bellman-Ford.

Shortest-paths is a broadly useful problem-solving model.