4.4 SHORTEST PATHS

- APIs
- shortest-paths properties
- Dijkstra's algorithm
- edge-weighted DAGs
- negative weights

Shortest paths in an edge-weighted digraph

Given an edge-weighted digraph, find the shortest path from s to t.

Google maps

Shortest path applications

- PERT/CPM.
- Map routing.
- Seam carving.
- Texture mapping.
- Robot navigation.
- Typesetting in TeX.
- Urban traffic planning.
- Optimal pipelining of VLSI chip.
- Telemarketer operator scheduling.
- Routing of telecommunications messages.
- Network routing protocols (OSPF, BGP, RIP).
- Exploiting arbitrage opportunities in currency exchange.
- Optimal truck routing through given traffic congestion pattern.

Shortest path variants

Which vertices?
- **Single source**: from one vertex \(s \) to every other vertex.
- Single sink: from every vertex to one vertex \(t \).
- Source-sink: from one vertex \(s \) to another \(t \).
- All pairs: between all pairs of vertices.

Restrictions on edge weights?
- Nonnegative weights.
- Euclidean weights.
- Arbitrary weights.

Cycles?
- No directed cycles.
- No "negative cycles."

Simplifying assumption. Shortest paths from \(s \) to each vertex \(v \) exist.

Weighted directed edge API

```java
public class DirectedEdge
{
    private final int v;
    private final double weight;

    public DirectedEdge(int v, int w, double weight)
    {
        this.v = v;
        this.w = w;
        this.weight = weight;
    }

    public int from()
    { return v; }

    public int to()
    { return w; }

    public int weight()
    { return weight; }
}
```

Idiom for processing an edge \(e \): \(\text{int } v = e.\text{from}(), \text{ w } = e.\text{to}(); \)

Weighted directed edge: implementation in Java

Similar to Edge for undirected graphs, but a bit simpler.

```java
public class DirectedEdge
{
    private final int v;
    private final double weight;

    public DirectedEdge(int v, int w, double weight)
    {
        this.v = v;
        this.w = w;
        this.weight = weight;
    }

    public int from()
    { return v; }

    public int to()
    { return w; }

    public int weight()
    { return weight; }
}
```
Edge-weighted digraph API

```java
public class EdgeWeightedDigraph
{
    private final int V;
    private final Bag<DirectedEdge>[] adj;

    public EdgeWeightedDigraph(int V)
    {
        this.V = V;
        adj = (Bag<DirectedEdge>[]) new Bag[V];
    }

    public void addEdge(DirectedEdge e)
    {
        int v = e.from();
        adj[v].add(e);
    }

    public Iterable<DirectedEdge> adj(int v)
    {
        return adj[v];
    }
}
```

Conventions. Allow self-loops and parallel edges.

Edge-weighted digraph: adjacency-lists implementation in Java

Same as `EdgeWeightedGraph` except replace `Graph` with `Digraph`.

```java
public class EdgeWeightedDigraph
{
    private final int V;
    private final Bag<DirectedEdge>[] adj;

    public EdgeWeightedDigraph(int V)
    {
        this.V = V;
        adj = (Bag<DirectedEdge>[]) new Bag[V];
    }

    public void addEdge(DirectedEdge e)
    {
        int v = e.from();
        adj[v].add(e);
    }

    public Iterable<DirectedEdge> adj(int v)
    {
        return adj[v];
    }
}
```

Single-source shortest paths API

Goal. Find the shortest path from `s` to every other vertex.

```java
public class SP
{
    SP(EdgeWeightedDigraph G, int s) shortest paths from `s` in graph `G`

    double distTo(int v) length of shortest path from `s` to `v`

    Iterable<DirectedEdge> pathTo(int v) shortest path from `s` to `v`

    boolean hasPathTo(int v) is there a path from `s` to `v`?

    SP sp = new SP(G, s);
    for (int v = 0; v < G.V(); v++)
    {
        StdOut.printf("%d to %d (%.2f): ", s, v, sp.distTo(v));
        for (DirectedEdge e : sp.pathTo(v))
            StdOut.print(e + " ");
        StdOut.println();
    }
```
Single-source shortest paths API

Goal. Find the shortest path from \(s \) to every other vertex.

```java
public class SP
{
    SP(EdgeWeightedDigraph G, int s) // shortest paths from \( s \) in graph \( G \)
    double distTo(int v) // length of shortest path from \( s \) to \( v \)
    Iterable <DirectedEdge> pathTo(int v) // shortest path from \( s \) to \( v \)
    boolean hasPathTo(int v) // is there a path from \( s \) to \( v \)?
}
```

Observation. A shortest-paths tree (SPT) solution exists. Why?

Consequence. Can represent the SPT with two vertex-indexed arrays:
- \(\text{distTo}[v] \) is length of shortest path from \(s \) to \(v \).
- \(\text{edgeTo}[v] \) is last edge on shortest path from \(s \) to \(v \).

![Shortest paths data structures](image)

4.4 Shortest Paths

- APIs
- shortest-paths properties
- Dijkstra’s algorithm
- edge-weighted DAGs
- negative weights

Data structures for single-source shortest paths

Goal. Find the shortest path from \(s \) to every other vertex.

Observation. A shortest-paths tree (SPT) solution exists. Why?

Consequence. Can represent the SPT with two vertex-indexed arrays:
- \(\text{distTo}[v] \) is length of shortest path from \(s \) to \(v \).
- \(\text{edgeTo}[v] \) is last edge on shortest path from \(s \) to \(v \).

```java
public double distTo(int v)
{ return distTo[v]; }

public Iterable<DirectedEdge> pathTo(int v)
{
    Stack<DirectedEdge> path = new Stack<DirectedEdge>();
    for (DirectedEdge e = edgeTo[v]; e != null; e = edgeTo[e.from()])
        path.push(e);
    return path;
}
```
Edge relaxation

Relax edge $e = v \rightarrow w$:
- $\text{distTo}[v]$ is length of shortest known path from s to v.
- $\text{distTo}[w]$ is length of shortest known path from s to w.
- $\text{edgeTo}[w]$ is last edge on shortest known path from s to w.
- If $e = v \rightarrow w$ gives shorter path to w through v, update both $\text{distTo}[w]$ and $\text{edgeTo}[w]$.

Shortest-paths optimality conditions

Proposition. Let G be an edge-weighted digraph. Then $\text{distTo}[]$ are the shortest path distances from s iff:
- $\text{distTo}[s] = 0$.
- For each vertex v, $\text{distTo}[v]$ is the length of some path from s to v.
- For each edge $e = v \rightarrow w$, $\text{distTo}[w] \leq \text{distTo}[v] + e.\text{weight}()$.

Pf. \Leftarrow [necessary]
- Suppose that $\text{distTo}[w] > \text{distTo}[v] + e.\text{weight}()$ for some edge $e = v \rightarrow w$.
- Then, e gives a path from s to w (through v) of length less than $\text{distTo}[w]$.

Pf. \Rightarrow [sufficient]
- Suppose that $s = v_0 \rightarrow v_1 \rightarrow v_2 \rightarrow \ldots \rightarrow v_k \rightarrow w$ is a shortest path from s to w.
- Then, $\text{distTo}[v_1] \leq \text{distTo}[v_0] + e_1.\text{weight}()$
$\text{distTo}[v_2] \leq \text{distTo}[v_1] + e_2.\text{weight}()$
\ldots
$\text{distTo}[v_k] \leq \text{distTo}[v_{k-1}] + e_{k-1}.\text{weight}()$
- Add inequalities; simplify; and substitute $\text{distTo}[v_0] = \text{distTo}[s] = 0$:
$\text{distTo}[w] = \text{distTo}[v_k] \leq e_1.\text{weight}() + e_2.\text{weight}() + \ldots + e_k.\text{weight}()$
- Thus, $\text{distTo}[w]$ is the weight of shortest path to w. \blacksquare
Generic shortest-paths algorithm

Generic algorithm (to compute SPT from s)

Initialize distTo[s] = 0 and distTo[v] = ∞ for all other vertices.
Repeat until optimality conditions are satisfied:
 - Relax any edge.

Proposition. Generic algorithm computes SPT (if it exists) from s.

Proof sketch.
- The entry distTo[v] is always the length of a simple path from s to v.
- Each successful relaxation decreases distTo[v] for some v.
- The entry distTo[v] can decrease at most a finite number of times.

Efficient implementations. How to choose which edge to relax?
Ex 1. Dijkstra's algorithm (nonnegative weights).
Ex 2. Topological sort algorithm (no directed cycles).
Ex 3. Bellman-Ford algorithm (no negative cycles).

Edsger W. Dijkstra: select quotes

“Do only what only you can do.”

“In their capacity as a tool, computers will be but a ripple on the surface of our culture. In their capacity as intellectual challenge, they are without precedent in the cultural history of mankind.”

“The use of COBOL cripples the mind: its teaching should, therefore, be regarded as a criminal offence.”

“It is practically impossible to teach good programming to students that have had a prior exposure to BASIC: as potential programmers they are mentally mutilated beyond hope of regeneration.”

“APL is a mistake, carried through to perfection. It is the language of the future for the programming techniques of the past: it creates a new generation of coding bums.”
Dijkstra's algorithm demo

- Consider vertices in increasing order of distance from s (non-tree vertex with the lowest $\text{distTo}[]$ value).
- Add vertex to tree and relax all edges pointing from that vertex.

Dijkstra's algorithm visualization

<table>
<thead>
<tr>
<th>v</th>
<th>$\text{distTo}[]$</th>
<th>$\text{edgeTo}[]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.0</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>5.0</td>
<td>0→1</td>
</tr>
<tr>
<td>2</td>
<td>14.0</td>
<td>5→2</td>
</tr>
<tr>
<td>3</td>
<td>17.0</td>
<td>2→3</td>
</tr>
<tr>
<td>4</td>
<td>9.0</td>
<td>0→4</td>
</tr>
<tr>
<td>5</td>
<td>13.0</td>
<td>4→5</td>
</tr>
<tr>
<td>6</td>
<td>25.0</td>
<td>2→6</td>
</tr>
<tr>
<td>7</td>
<td>8.0</td>
<td>0→7</td>
</tr>
</tbody>
</table>
Dijkstra's algorithm: correctness proof

Proposition. Dijkstra's algorithm computes a SPT in any edge-weighted digraph with nonnegative weights.

Pf.
- Each edge \(e = v \rightarrow w \) is relaxed exactly once (when vertex \(v \) is relaxed), leaving \(\text{distTo}[w] \leq \text{distTo}[v] + e.\text{weight} \).
- Inequality holds until algorithm terminates because:
 - \(\text{distTo}[w] \) cannot increase
 - \(\text{distTo}[v] \) will not change
- Thus, upon termination, shortest-paths optimality conditions hold. ■

Dijkstra's algorithm: Java implementation

```java
public class DijkstraSP
{
    private DirectedEdge[] edgeTo;
    private double[] distTo;
    private IndexMinPQ<Double> pq;

    public DijkstraSP(EdgeWeightedDigraph G, int s)
    {
        edgeTo = new DirectedEdge[G.V()];
        distTo = new double[G.V()];
        pq = new IndexMinPQ<Double>(G.V());

        for (int v = 0; v < G.V(); v++)
            distTo[v] = Double.POSITIVE_INFINITY;
        distTo[s] = 0.0;

        pq.insert(s, 0.0);
        while (!pq.isEmpty())
            { int v = pq.delMin();
              for (DirectedEdge e : G.adj(v))
                  relax(e);
            }
}

private void relax(DirectedEdge e)
{
    int v = e.from(), w = e.to();
    if (distTo[w] > distTo[v] + e.weight())
        { distTo[w] = distTo[v] + e.weight();
          edgeTo[w] = e;
          if (pq.contains(w)) pq.decreaseKey(w, distTo[w]);
          else pq.insert (w, distTo[w]);
        }
}
```

relax vertices in order of distance from s
update PQ
Dijkstra’s algorithm: which priority queue?

Depends on PQ implementation: V insert, V delete-min, E decrease-key.

<table>
<thead>
<tr>
<th>PQ Implementation</th>
<th>insert</th>
<th>delete-min</th>
<th>decrease-key</th>
<th>total</th>
</tr>
</thead>
<tbody>
<tr>
<td>unordered array</td>
<td>1</td>
<td>V</td>
<td>1</td>
<td>V^2</td>
</tr>
<tr>
<td>binary heap</td>
<td>$\log V$</td>
<td>$\log V$</td>
<td>$\log V$</td>
<td>$E\log V$</td>
</tr>
<tr>
<td>d-way heap</td>
<td>$\log_d V$</td>
<td>$d \log_d V$</td>
<td>$\log_d V$</td>
<td>$E \log_d V$</td>
</tr>
<tr>
<td>Fibonacci heap</td>
<td>1 †</td>
<td>$\log V$ †</td>
<td>1 †</td>
<td>$E + V \log V$</td>
</tr>
</tbody>
</table>

† amortized

Bottom line.
- Array implementation optimal for dense graphs.
- Binary heap much faster for sparse graphs.
- 4-way heap worth the trouble in performance-critical situations.
- Fibonacci heap best in theory, but not worth implementing.

Computing a spanning tree in a graph

Dijkstra’s algorithm seem familiar?
- Prim’s algorithm is essentially the same algorithm.
- Both are in a family of algorithms that compute a spanning tree.

Main distinction: Rule used to choose next vertex for the tree.
- Prim: Closest vertex to the tree (via an undirected edge).
- Dijkstra: Closest vertex to the source (via a directed path).

Note: DFS and BFS are also in this family of algorithms.

Acyclic edge-weighted digraphs

Q. Suppose that an edge-weighted digraph has no directed cycles. Is it easier to find shortest paths than in a general digraph?

A. Yes!
Acyclic shortest paths demo

- Consider vertices in topological order.
- Relax all edges pointing from that vertex.

![Graph](image)

an edge-weighted DAG

Acyclic shortest paths demo

- Consider vertices in topological order.
- Relax all edges pointing from that vertex.

![Graph](image)

shortest-paths tree from vertex s

Shortest paths in edge-weighted DAGs

Proposition. Topological sort algorithm computes SPT in any edge-weighted DAG in time proportional to $E + V$.

Pf.

- Each edge $e = v \rightarrow w$ is relaxed exactly once (when vertex v is relaxed), leaving $\text{distTo}[w] \leq \text{distTo}[v] + e$.weight$()$.
- Inequality holds until algorithm terminates because:
 - $\text{distTo}[w]$ cannot increase
 - $\text{distTo}[v]$ will not change

- Thus, upon termination, shortest-paths optimality conditions hold. ■

![Algorithm](image)

topological order

edge weights can be negative!
Content-aware resizing

Seam carving. [Avidan and Shamir] Resize an image without distortion for display on cell phones and web browsers.

To find vertical seam:
- Grid DAG: vertex = pixel; edge = from pixel to 3 downward neighbors.
- Weight of pixel = energy function of 8 neighboring pixels.
- Seam = shortest path (sum of vertex weights) from top to bottom.

Content-aware resizing

Seam carving. [Avidan and Shamir] Resize an image without distortion for display on cell phones and web browsers.

In the wild. Photoshop CS 5, Imagemagick, GIMP, ...

Content-aware resizing

To find vertical seam:
- Grid DAG: vertex = pixel; edge = from pixel to 3 downward neighbors.
- Weight of pixel = energy function of 8 neighboring pixels.
- Seam = shortest path (sum of vertex weights) from top to bottom.
Content-aware resizing

To remove vertical seam:
- Delete pixels on seam (one in each row).

Longest paths in edge-weighted DAGs

Formulate as a shortest paths problem in edge-weighted DAGs.
- Negate all weights.
- Find shortest paths.
- Negate weights in result.

<table>
<thead>
<tr>
<th>longest paths input</th>
<th>shortest paths input</th>
</tr>
</thead>
<tbody>
<tr>
<td>5->4 0.35</td>
<td>5->4 -0.35</td>
</tr>
<tr>
<td>4->7 0.37</td>
<td>4->7 -0.37</td>
</tr>
<tr>
<td>5->7 0.28</td>
<td>5->7 -0.28</td>
</tr>
<tr>
<td>5->1 0.32</td>
<td>5->1 -0.32</td>
</tr>
<tr>
<td>4->0 0.38</td>
<td>4->0 -0.38</td>
</tr>
<tr>
<td>0->2 0.26</td>
<td>0->2 -0.26</td>
</tr>
<tr>
<td>3->7 0.39</td>
<td>3->7 -0.39</td>
</tr>
<tr>
<td>1->3 0.29</td>
<td>1->3 -0.29</td>
</tr>
<tr>
<td>7->2 0.34</td>
<td>7->2 -0.34</td>
</tr>
<tr>
<td>6->2 0.40</td>
<td>6->2 -0.40</td>
</tr>
<tr>
<td>3->6 0.52</td>
<td>3->6 -0.52</td>
</tr>
<tr>
<td>6->0 0.58</td>
<td>6->0 -0.58</td>
</tr>
<tr>
<td>6->4 0.93</td>
<td>6->4 -0.93</td>
</tr>
</tbody>
</table>

Key point. Topological sort algorithm works even with negative weights.

Longest paths in edge-weighted DAGs: application

Parallel job scheduling. Given a set of jobs with durations and precedence constraints, schedule the jobs (by finding a start time for each) so as to achieve the minimum completion time, while respecting the constraints.

<table>
<thead>
<tr>
<th>job</th>
<th>duration</th>
<th>must complete before</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>41.0</td>
<td>1 7 9</td>
</tr>
<tr>
<td>1</td>
<td>51.0</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>50.0</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>36.0</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>38.0</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>45.0</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>21.0</td>
<td>3 8</td>
</tr>
<tr>
<td>7</td>
<td>32.0</td>
<td>3 8</td>
</tr>
<tr>
<td>8</td>
<td>32.0</td>
<td>2</td>
</tr>
<tr>
<td>9</td>
<td>29.0</td>
<td>4 6</td>
</tr>
</tbody>
</table>

Parallel job scheduling solution
Critical path method

CPM. To solve a parallel job-scheduling problem, create edge-weighted DAG:
- Source and sink vertices.
- Two vertices (begin and end) for each job.
- Three edges for each job.
 - begin to end (weighted by duration)
 - source to begin (0 weight)
 - end to sink (0 weight)
- One edge for each precedence constraint (0 weight).

<table>
<thead>
<tr>
<th>job</th>
<th>duration</th>
<th>must complete before</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>41.0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>51.0</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>50.0</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>36.0</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>38.0</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>45.0</td>
<td>6</td>
</tr>
<tr>
<td>6</td>
<td>21.0</td>
<td>7</td>
</tr>
<tr>
<td>7</td>
<td>32.0</td>
<td>8</td>
</tr>
<tr>
<td>8</td>
<td>32.0</td>
<td>2</td>
</tr>
<tr>
<td>9</td>
<td>29.0</td>
<td>4</td>
</tr>
</tbody>
</table>

Critical path method

CPM. Use longest path from the source to schedule each job.

Shortest paths with negative weights: failed attempts

Dijkstra. Doesn’t work with negative edge weights.

Re-weighting. Add a constant to each edge weight doesn’t work.

Conclusion. Need a different algorithm.
Negative cycles

Definition. A negative cycle is a directed cycle whose sum of edge weights is negative.

```
digraph
4->5 0.35
5->4 -0.66
4->7 0.37
5->7 0.28
7->5 0.28
5->1 0.32
0->4 0.38
0->2 0.26
7->3 0.39
1->3 0.29
2->7 0.34
6->2 0.40
3->6 0.52
6->0 0.58
6->4 0.93
0->4->7->5->4->7->5...->1->3->6
```

Proposition. A SPT exists iff no negative cycles.

Bellman-Ford algorithm

Bellman–Ford algorithm

Initialize distTo[s] = 0 and distTo[v] = ∞ for all other vertices.

Repeat V times:
- Relax each edge.

```python
for (int i = 0; i < G.V(); i++)
    for (int v = 0; v < G.V(); v++)
        for (DirectedEdge e : G.adj(v))
            relax(e);
```

Bellman-Ford algorithm demo

Repeat V times: relax all E edges.

```
0->1 5.0
0->4 9.0
0->7 8.0
1->2 12.0
1->3 15.0
1->7 4.0
2->3 3.0
2->6 11.0
3->6 9.0
4->5 4.0
4->6 20.0
4->7 5.0
5->2 1.0
5->6 13.0
7->5 6.0
7->2 7.0
```

Bellman-Ford algorithm demo

Repeat V times: relax all E edges.

```
v   distTo[]   edgeTo[]
0   0.0       -
1   5.0       0->1
2   14.0      5->2
3   17.0      2->3
4   9.0       0->4
5   13.0      4->5
6   25.0      2->6
7   8.0       0->7
```

an edge-weighted digraph

shortest-paths tree from vertex s

Bellman-Ford algorithm

Bellman-Ford algorithm demo

repeat V times: relax all E edges.
Bellman-Ford algorithm: visualization

```
passes
4 7 10
13 SPT
```

Bellman-Ford algorithm: analysis

```
Bellman-Ford algorithm
Initialize distTo[s] = 0 and distTo[v] = ∞ for all other vertices.
Repeat V times:
   - Relax each edge.
```

Proposition. Dynamic programming algorithm computes SPT in any edge-weighted digraph with no negative cycles in time proportional to $E \times V$.

Pf idea. After pass i, found path that is at least as short as any shortest path containing i (or fewer) edges.

Bellman-Ford algorithm: practical improvement

Observation. If $\text{distTo}[v]$ does not change during pass i, no need to relax any edge pointing from v in pass $i+1$.

FIFO implementation. Maintain queue of vertices whose $\text{distTo}[\cdot]$ changed.

be careful to keep at most one copy of each vertex on queue (why?)

Overall effect.
- The running time is still proportional to $E \times V$ in worst case.
- But much faster than that in practice.

Single source shortest-paths implementation: cost summary

<table>
<thead>
<tr>
<th>algorithm</th>
<th>restriction</th>
<th>typical case</th>
<th>worst case</th>
<th>extra space</th>
</tr>
</thead>
<tbody>
<tr>
<td>topological sort</td>
<td>no directed cycles</td>
<td>$E + V$</td>
<td>$E + V$</td>
<td>V</td>
</tr>
<tr>
<td>Dijkstra (binary heap)</td>
<td>no negative weights</td>
<td>$E \log V$</td>
<td>$E \log V$</td>
<td>V</td>
</tr>
<tr>
<td>Bellman–Ford</td>
<td>no negative cycles</td>
<td>$E V$</td>
<td>$E V$</td>
<td>V</td>
</tr>
<tr>
<td>Bellman–Ford (queue-based)</td>
<td>no negative cycles</td>
<td>$E + V$</td>
<td>$E V$</td>
<td>V</td>
</tr>
</tbody>
</table>

Remark 1. Directed cycles make the problem harder.
Remark 2. Negative weights make the problem harder.
Remark 3. Negative cycles makes the problem intractable.
Finding a negative cycle

Negative cycle. Add two method to the API for SP.

```java
boolean hasNegativeCycle() // is there a negative cycle?
Iterable DirectedEdge negativeCycle() // negative cycle reachable from s
```

Observation. If there is a negative cycle, Bellman-Ford gets stuck in loop, updating `distTo[]` and `edgeTo[]` entries of vertices in the cycle.

```plaintext
digraph
4->5 0.35
5->4 -0.66
4->7 0.37
5->7 0.28
7->5 0.28
5->1 0.32
0->4 0.38
0->2 0.26
7->3 0.39
1->3 0.29
2->7 0.34
6->2 0.40
3->6 0.32
6->0 0.58
6->4 0.93
```

Proposition. If any vertex `v` is updated in pass `V`, there exists a negative cycle (and can trace back `edgeTo[v]` entries to find it).

In practice. Check for negative cycles more frequently.

Negative cycle application: arbitrage detection

Problem. Given table of exchange rates, is there an arbitrage opportunity?

<table>
<thead>
<tr>
<th>Currency</th>
<th>USD</th>
<th>EUR</th>
<th>GBP</th>
<th>CHF</th>
<th>CAD</th>
</tr>
</thead>
<tbody>
<tr>
<td>USD</td>
<td>1</td>
<td>0.741</td>
<td>0.657</td>
<td>1.061</td>
<td>1.011</td>
</tr>
<tr>
<td>EUR</td>
<td>1.350</td>
<td>1</td>
<td>0.888</td>
<td>1.433</td>
<td>1.366</td>
</tr>
<tr>
<td>GBP</td>
<td>1.521</td>
<td>1.126</td>
<td>1</td>
<td>1.614</td>
<td>1.538</td>
</tr>
<tr>
<td>CHF</td>
<td>0.943</td>
<td>0.698</td>
<td>0.620</td>
<td>1</td>
<td>0.953</td>
</tr>
<tr>
<td>CAD</td>
<td>0.995</td>
<td>0.732</td>
<td>0.650</td>
<td>1.049</td>
<td>1</td>
</tr>
</tbody>
</table>

Ex. $1,000 \rightarrow 741$ Euros $\rightarrow 1,012.206$ Canadian dollars $\rightarrow 1,007.14497$.

Challenge. Express as a negative cycle detection problem.
Negative cycle application: arbitrage detection

Model as a negative cycle detection problem by taking logs.

- Let weight of edge $v \rightarrow w$ be $-\ln$ (exchange rate from currency v to w).
- Multiplication turns to addition; >1 turns to <0.
- Find a directed cycle whose sum of edge weights is <0 (negative cycle).

Remark. Fastest algorithm is extraordinarily valuable!

Shortest paths summary

Nonnegative weights.
- Arises in many applications.
- Dijkstra's algorithm is nearly linear-time.

Acyclic edge-weighted digraphs.
- Arise in some applications.
- Topological sort algorithm is linear time.
- Edge weights can be negative.

Negative weights and negative cycles.
- Arise in some applications.
- If no negative cycles, can find shortest paths via Bellman-Ford.
- If negative cycles, can find one via Bellman-Ford.

Shortest-paths is a broadly useful problem-solving model.