4.2 Directed Graphs

- introduction
- digraph API
- digraph search
- topological sort
- strong components
4.2 Directed Graphs

- introduction
- digraph API
- digraph search
- topological sort
- strong components
Directed graphs

Digraph. Set of vertices connected pairwise by directed edges.
Road network

Vertex = intersection; edge = one-way street.
The Political Blogosphere and the 2004 U.S. Election: Divided They Blog, Adamic and Glance, 2005
Overnight interbank loan graph

Vertex = bank; edge = overnight loan.

The Topology of the Federal Funds Market, Bech and Atalay, 2008
Uber taxi graph

Vertex = taxi pickup; edge = taxi ride.

http://blog.uber.com/2012/01/09/uberdata-san-franciscomics/
Implication graph

Vertex = variable; edge = logical implication.
Combinational circuit

Vertex = logical gate; edge = wire.
WordNet graph

Vertex = synset; edge = hypernym relationship.

http://wordnet.princeton.edu
Digraph applications

<table>
<thead>
<tr>
<th>digraph</th>
<th>vertex</th>
<th>directed edge</th>
</tr>
</thead>
<tbody>
<tr>
<td>transportation</td>
<td>street intersection</td>
<td>one-way street</td>
</tr>
<tr>
<td>web</td>
<td>web page</td>
<td>hyperlink</td>
</tr>
<tr>
<td>food web</td>
<td>species</td>
<td>predator-prey relationship</td>
</tr>
<tr>
<td>WordNet</td>
<td>synset</td>
<td>hypernym</td>
</tr>
<tr>
<td>scheduling</td>
<td>task</td>
<td>precedence constraint</td>
</tr>
<tr>
<td>financial</td>
<td>bank</td>
<td>transaction</td>
</tr>
<tr>
<td>cell phone</td>
<td>person</td>
<td>placed call</td>
</tr>
<tr>
<td>infectious disease</td>
<td>person</td>
<td>infection</td>
</tr>
<tr>
<td>game</td>
<td>board position</td>
<td>legal move</td>
</tr>
<tr>
<td>citation</td>
<td>journal article</td>
<td>citation</td>
</tr>
<tr>
<td>object graph</td>
<td>object</td>
<td>pointer</td>
</tr>
<tr>
<td>inheritance hierarchy</td>
<td>class</td>
<td>inherits from</td>
</tr>
<tr>
<td>control flow</td>
<td>code block</td>
<td>jump</td>
</tr>
</tbody>
</table>
Some digraph problems

<table>
<thead>
<tr>
<th>problem</th>
<th>description</th>
</tr>
</thead>
<tbody>
<tr>
<td>s→t path</td>
<td>Is there a path from s to t?</td>
</tr>
<tr>
<td>shortest s→t path</td>
<td>What is the shortest path from s to t?</td>
</tr>
<tr>
<td>directed cycle</td>
<td>Is there a directed cycle in the graph?</td>
</tr>
<tr>
<td>topological sort</td>
<td>Can the digraph be drawn so that all edges point upwards?</td>
</tr>
<tr>
<td>strong connectivity</td>
<td>Is there a directed path between all pairs of vertices?</td>
</tr>
<tr>
<td>transitive closure</td>
<td>For which vertices v and w is there a directed path from v to w?</td>
</tr>
<tr>
<td>PageRank</td>
<td>What is the importance of a web page?</td>
</tr>
</tbody>
</table>
4.2 Directed Graphs

- introduction
- digraph API
- digraph search
- topological sort
- strong components
Digraph API

Almost identical to Graph API.

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>public class Digraph</code></td>
<td></td>
</tr>
<tr>
<td><code>Digraph(int V)</code></td>
<td>create an empty digraph with V vertices</td>
</tr>
<tr>
<td><code>Digraph(In in)</code></td>
<td>create a digraph from input stream</td>
</tr>
<tr>
<td><code>void addEdge(int v, int w)</code></td>
<td>add a directed edge v→w</td>
</tr>
<tr>
<td><code>Iterable<Integer> adj(int v)</code></td>
<td>vertices pointing from v</td>
</tr>
<tr>
<td><code>int V()</code></td>
<td>number of vertices</td>
</tr>
<tr>
<td><code>int E()</code></td>
<td>number of edges</td>
</tr>
<tr>
<td><code>Digraph reverse()</code></td>
<td>reverse of this digraph</td>
</tr>
<tr>
<td><code>String toString()</code></td>
<td>string representation</td>
</tr>
</tbody>
</table>
Digraph API

```
In in = new In(args[0]);
Digraph G = new Digraph(in);

for (int v = 0; v < G.V(); v++)
    for (int w : G.adj(v))
        StdOut.println(v + "->" + w);
```

% java Digraph tinyDG.txt
0->5
0->1
2->0
2->3
3->5
3->2
4->3
4->2
5->4
:
11->4
11->12
12->9

read digraph from input stream
print out each edge (once)
Digraph representation: adjacency lists

Maintain vertex-indexed array of lists.
Digraph representations

In practice. Use adjacency-lists representation.

- Algorithms based on iterating over vertices pointing from \(v \).
- Real-world digraphs tend to be sparse.

<table>
<thead>
<tr>
<th>representation</th>
<th>space</th>
<th>insert edge from (v) to (w)</th>
<th>edge from (v) to (w)?</th>
<th>iterate over vertices pointing from (v)?</th>
</tr>
</thead>
<tbody>
<tr>
<td>list of edges</td>
<td>(E)</td>
<td>1</td>
<td>(E)</td>
<td>(E)</td>
</tr>
<tr>
<td>adjacency matrix</td>
<td>(V^2)</td>
<td>1(^\dagger)</td>
<td>1</td>
<td>(V)</td>
</tr>
<tr>
<td>adjacency lists</td>
<td>(E + V)</td>
<td>1</td>
<td>(\text{outdegree}(v))</td>
<td>(\text{outdegree}(v))</td>
</tr>
</tbody>
</table>

\(^\dagger\) disallows parallel edges

huge number of vertices, small average vertex degree
Adjacency-lists graph representation (review): Java implementation

```java
public class Graph {
    private final int V;
    private final Bag<Integer>[] adj;

    public Graph(int V) {
        this.V = V;
        adj = (Bag<Integer>[]) new Bag[V];
        for (int v = 0; v < V; v++)
            adj[v] = new Bag<Integer>(v);
    }

    public void addEdge(int v, int w) {
        adj[v].add(w);
        adj[w].add(v);
    }

    public Iterable<Integer> adj(int v) {
        return adj[v];
    }
}
```
Adjacency-lists digraph representation: Java implementation

```java
class Digraph {
    private final int V;
    private final Bag<Integer>[] adj;

    public Digraph(int V) {
        this.V = V;
        adj = (Bag<Integer>[]) new Bag[V];
        for (int v = 0; v < V; v++)
            adj[v] = new Bag<Integer>();
    }

    public void addEdge(int v, int w) {
        adj[v].add(w);
    }

    public Iterable<Integer> adj(int v) {
        return adj[v];
    }
}
```

- **Adjacency lists**: A data structure used to represent a digraph.
- **Create empty digraph with V vertices**: Initializes the digraph with V vertices.
- **Add edge v→w**: Adds an edge from vertex v to vertex w.
- **Iterator for vertices pointing from v**: Provides an iterator to access vertices adjacent to v.
4.2 Directed Graphs

- introduction
- digraph API
- digraph search
- topological sort
- strong components
Reachability

Problem. Find all vertices reachable from s along a directed path.
Depth-first search in digraphs

Same method as for undirected graphs.
- Every undirected graph is a digraph (with edges in both directions).
- DFS is a digraph algorithm.

DFS (to visit a vertex v)

Mark v as visited.
Recursively visit all unmarked vertices w pointing from v.
Depth-first search demo

To visit a vertex v:
- Mark vertex v as visited.
- Recursively visit all unmarked vertices pointing from v.

A directed graph

4→2
2→3
3→2
6→0
0→1
2→0
11→12
12→9
9→10
9→11
8→9
10→12
11→4
4→3
3→5
6→8
8→6
5→4
0→5
6→4
6→9
7→6
Depth-first search demo

To visit a vertex v:

- Mark vertex v as visited.
- Recursively visit all unmarked vertices pointing from v.

Reachable from vertex 0

<table>
<thead>
<tr>
<th>v</th>
<th>marked[]</th>
<th>edgeTo[]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>T</td>
<td>–</td>
</tr>
<tr>
<td>1</td>
<td>T</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>T</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>T</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>T</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>T</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>F</td>
<td>–</td>
</tr>
<tr>
<td>7</td>
<td>F</td>
<td>–</td>
</tr>
<tr>
<td>8</td>
<td>F</td>
<td>–</td>
</tr>
<tr>
<td>9</td>
<td>F</td>
<td>–</td>
</tr>
<tr>
<td>10</td>
<td>F</td>
<td>–</td>
</tr>
<tr>
<td>11</td>
<td>F</td>
<td>–</td>
</tr>
<tr>
<td>12</td>
<td>F</td>
<td>–</td>
</tr>
</tbody>
</table>
Depth-first search (in undirected graphs)

Recall code for undirected graphs.

```java
public class DepthFirstSearch {
    private boolean[] marked;

    public DepthFirstSearch(Graph G, int s) {
        marked = new boolean[G.V()];
        dfs(G, s);
    }

    private void dfs(Graph G, int v) {
        marked[v] = true;
        for (int w : G.adj(v))
            if (!marked[w]) dfs(G, w);
    }

    public boolean visited(int v) {
        return marked[v];
    }
}
```

- true if connected to s
- constructor marks vertices connected to s
- recursive DFS does the work
- client can ask whether any vertex is connected to s
Depth-first search (in directed graphs)

Code for directed graphs identical to undirected one.
[substitute Digraph for Graph]

```java
public class DirectedDFS {
    private boolean[] marked;

    public DirectedDFS(Digraph G, int s) {
        marked = new boolean[G.V()];
        dfs(G, s);
    }

    private void dfs(Digraph G, int v) {
        marked[v] = true;
        for (int w : G.adj(v))
            if (!marked[w]) dfs(G, w);
    }

    public boolean visited(int v) {
        return marked[v];
    }
}
```

- true if path from s
- constructor marks vertices reachable from s
- recursive DFS does the work
- client can ask whether any vertex is reachable from s
Reachability application: program control-flow analysis

Every program is a digraph.
- Vertex = basic block of instructions (straight-line program).
- Edge = jump.

Dead-code elimination.
Find (and remove) unreachable code.

Infinite-loop detection.
Determine whether exit is unreachable.
Reachability application: mark-sweep garbage collector

Every data structure is a digraph.
 • Vertex = object.
 • Edge = reference.

Roots. Objects known to be directly accessible by program (e.g., stack).

Reachable objects. Objects indirectly accessible by program (starting at a root and following a chain of pointers).
Reachability application: mark-sweep garbage collector

Mark-sweep algorithm. [McCarthy, 1960]

- Mark: mark all reachable objects.
- Sweep: if object is unmarked, it is garbage (so add to free list).

Memory cost. Uses 1 extra mark bit per object (plus DFS stack).
Depth-first search in digraphs summary

DFS enables direct solution of simple digraph problems.

✓ • Reachability.
 • Path finding.
 • Topological sort.
 • Directed cycle detection.

Basis for solving difficult digraph problems.

• 2-satisfiability.
• Directed Euler path.
• Strongly-connected components.
Breadth-first search in digraphs

Same method as for undirected graphs.

- Every undirected graph is a digraph (with edges in both directions).
- BFS is a **digraph** algorithm.

BFS (from source vertex s)

- Put s onto a FIFO queue, and mark s as visited.
- Repeat until the queue is empty:
 - remove the least recently added vertex v
 - for each unmarked vertex pointing from v:
 - add to queue and mark as visited.

Proposition. BFS computes shortest paths (fewest number of edges) from s to all other vertices in a digraph in time proportional to $E + V$.
Directed breadth-first search demo

Repeat until queue is empty:
- Remove vertex v from queue.
- Add to queue all unmarked vertices pointing from v and mark them.
Directed breadth-first search demo

Repeat until queue is empty:
 • Remove vertex \(v \) from queue.
 • Add to queue all unmarked vertices pointing from \(v \) and mark them.

```
\begin{array}{rrr}
\text{v} & \text{edgeTo[]} & \text{distTo[]} \\
0 & - & 0 \\
1 & 0 & 1 \\
2 & 0 & 1 \\
3 & 4 & 3 \\
4 & 2 & 2 \\
5 & 3 & 4 \\
\end{array}
```

done
Multiple-source shortest paths

Multiple-source shortest paths. Given a digraph and a set of source vertices, find shortest path from any vertex in the set to each other vertex.

Ex. \(S = \{ 1, 7, 10 \} \).
- Shortest path to 4 is 7\(\rightarrow\)6\(\rightarrow\)4.
- Shortest path to 5 is 7\(\rightarrow\)6\(\rightarrow\)0\(\rightarrow\)5.
- Shortest path to 12 is 10\(\rightarrow\)12.
- ...

Q. How to implement multi-source shortest paths algorithm?
A. Use BFS, but initialize by enqueuing all source vertices.
Breadth-first search in digraphs application: web crawler

Solution. [BFS with implicit digraph]

- Choose root web page as source s.
- Maintain a Queue of websites to explore.
- Maintain a SET of discovered websites.
- Dequeue the next website and enqueue websites to which it links (provided you haven't done so before).

Q. Why not use DFS?
Bare-bones web crawler: Java implementation

```java
import java.util.Queue;
import java.util.Set;
import java.util.regex.Pattern;

public class WebCrawler {
    public static void main(String[] args) {
        Queue<String> queue = new Queue<String>();
        Set<String> marked = new Set<String>();

        String root = "http://www.princeton.edu";
        queue.enqueue(root);
        marked.add(root);

        while (!queue.isEmpty()) {
            String v = queue.dequeue();
            StdOut.println(v);
            In in = new In(v);
            String input = in.readAll();

            String regexp = "http://(\w+\.)+(\w+)";
            Pattern pattern = Pattern.compile(regexp);
            Matcher matcher = pattern.matcher(input);
            while (matcher.find()) {
                String w = matcher.group();
                if (!marked.contains(w)) {
                    marked.add(w);
                    queue.enqueue(w);
                }
            }
        }
    }
}
```

- *queue of websites to crawl*
- *set of marked websites*
- *start crawling from root website*
- *read in raw html from next website in queue*
- *use regular expression to find all URLs in website of form http://xxx.yyy.zzz [crude pattern misses relative URLs]*
- *if unmarked, mark it and put on the queue*
Web crawler output

BFS crawl

http://www.princeton.edu
http://www.w3.org
http://ogp.me
http://giving.princeton.edu
http://www.princetonartmuseum.org
http://www.gopricetontigers.com
http://library.princeton.edu
http://helpdesk.princeton.edu
http://tigernet.princeton.edu
http://alumni.princeton.edu
http://gradschool.princeton.edu
http://vimeo.com
http://princetonusg.com
http://artmuseum.princeton.edu
http://jobs.princeton.edu
http://odoc.princeton.edu
http://blogs.princeton.edu
http://www.facebook.com
http://twitter.com
http://www.youtube.com
http://deimos.apple.com
http://qeprize.org
http://en.wikipedia.org
...

DFS crawl

http://www.princeton.edu
http://deimos.apple.com
http://www.youtube.com
http://www.google.com
http://news.google.com
http://csi.gstatic.com
http://googlenewspost.blogspot.com
http://labs.google.com
http://groups.google.com
http://img1.blogblog.com
http://feeds.feedburner.com
http://buttons.googleusercontent.com
http://fusion.google.com
http://inside.search.blogspot.com
http://agoogleaday.com
http://static.googleusercontent.com
http://searchresearch1.blogspot.com
http://feedburner.google.com
http://www.dot.ca.gov
http://www.TahoeRoads.com
http://www.LakeTahoeTransit.com
http://www.laketahoe.com
http://ethel.tahoeguide.com
...

37
4.2 Directed Graphs

- introduction
- digraph API
- digraph search
- topological sort
- strong components
Precedence scheduling

Goal. Given a set of tasks to be completed with precedence constraints, in which order should we schedule the tasks?

Digraph model. vertex = task; edge = precedence constraint.

- 0. Algorithms
- 1. Complexity Theory
- 2. Artificial Intelligence
- 3. Intro to CS
- 4. Cryptography
- 5. Scientific Computing
- 6. Advanced Programming

![Graph example](image-url)
Topological sort

DAG. Directed acyclic graph.

Topological sort. Redraw DAG so all edges point upwards.

0 → 5 0 → 2
0 → 1 3 → 6
3 → 5 3 → 4
5 → 2 6 → 4
6 → 0 3 → 2
1 → 4

directed edges

DAG

topological order

Solution. DFS. What else?
Topological sort demo

- Run depth-first search.
- Return vertices in reverse postorder.

```
tinyDAG7.txt
7
11
0 5
0 2
0 1
3 6
3 5
3 4
5 2
6 4
6 0
3 2
```

A directed acyclic graph
Topological sort demo

- Run depth-first search.
- Return vertices in reverse postorder.

```
postorder
4 1 2 5 0 6 3

topological order
3 6 0 5 2 1 4
```

done
Depth-first search order

```java
public class DepthFirstOrder {
    private boolean[] marked;
    private Stack<Integer> reversePostorder;

    public DepthFirstOrder(Digraph G) {
        reversePostorder = new Stack<Integer>();
        marked = new boolean[G.V()];
        for (int v = 0; v < G.V(); v++)
            if (!marked[v]) dfs(G, v);
    }

    private void dfs(Digraph G, int v) {
        marked[v] = true;
        for (int w : G.adj(v))
            if (!marked[w]) dfs(G, w);
        reversePostorder.push(v);
    }

    public Iterable<Integer> reversePostorder() {
        return reversePostorder;
    }
}
```

returns all vertices in “reverse DFS postorder”
Why does topological sort algorithm work?

• First vertex in postorder has outdegree 0.
• Second-to-last vertex in postorder can only point to last vertex.
• ...

Topological sort in a DAG: intuition

canonic

postorder
4 1 2 5 0 6 3

topological order
3 6 0 5 2 1 4
Topological sort in a DAG: correctness proof

Proposition. Reverse DFS postorder of a DAG is a topological order.

Pf. Consider any edge \(v \rightarrow w \). When \(\text{dfs}(v) \) is called:

- **Case 1:** \(\text{dfs}(w) \) has already been called and returned. Thus, \(w \) was done before \(v \).

- **Case 2:** \(\text{dfs}(w) \) has not yet been called. \(\text{dfs}(w) \) will get called directly or indirectly by \(\text{dfs}(v) \) and will finish before \(\text{dfs}(v) \). Thus, \(w \) will be done before \(v \).

- **Case 3:** \(\text{dfs}(w) \) has already been called, but has not yet returned. Can’t happen in a DAG: function call stack contains path from \(w \) to \(v \), so \(v \rightarrow w \) would complete a cycle.

All vertices pointing from 3 are done before 3 is done, so they appear after 3 in topological order.
Directed cycle detection

Proposition. A digraph has a topological order iff no directed cycle.

Pf.
- If directed cycle, topological order impossible.
- If no directed cycle, DFS-based algorithm finds a topological order.

Goal. Given a digraph, find a directed cycle.

Solution. DFS. What else? See textbook.
Directed cycle detection application: precedence scheduling

Scheduling. Given a set of tasks to be completed with precedence constraints, in what order should we schedule the tasks?

![Table](http://xkcd.com/754)

Remark. A directed cycle implies scheduling problem is infeasible.
Directed cycle detection application: cyclic inheritance

The Java compiler does cycle detection.

```java
public class A extends B {
    ...
}
```

```java
public class B extends C {
    ...
}
```

```java
public class C extends A {
    ...
}
```

```
% javac A.java
A.java:1: cyclic inheritance involving A
public class A extends B { }
^
1 error
```
Directed cycle detection application: spreadsheet recalculation

Microsoft Excel does cycle detection (and has a circular reference toolbar!)
Observation. DFS visits each vertex exactly once. The order in which it does so can be important.

Orderings.

- Preorder: order in which dfs() is called.
- Postorder: order in which dfs() returns.
- Reverse postorder: reverse order in which dfs() returns.

```java
private void dfs(Graph G, int v) {
    marked[v] = true;
    preorder.enqueue(v);
    for (int w : G.adj(v))
        if (!marked[w]) dfs(G, w);
    postorder.enqueue(v);
    reversePostorder.push(v);
}
```
4.2 Directed Graphs

- introduction
- digraph API
- digraph search
- topological sort
- strong components
Strongly-connected components

Def. Vertices v and w are **strongly connected** if there is both a directed path from v to w and a directed path from w to v.

Key property. Strong connectivity is an equivalence relation:
- v is strongly connected to v.
- If v is strongly connected to w, then w is strongly connected to v.
- If v is strongly connected to w and w to x, then v is strongly connected to x.

Def. A **strong component** is a maximal subset of strongly-connected vertices.

![Diagram of a digraph with 5 strongly-connected components](image)
Connected components vs. strongly-connected components

v and w are **connected** if there is a path between v and w

v and w are **strongly connected** if there is both a directed path from v to w and a directed path from w to v

A digraph and its strong components

A graph and its connected components

Connected component id (easy to compute with DFS)

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>id[]</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

Strongly-connected component id (how to compute?)

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>id[]</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

```java
public boolean connected(int v, int w) {
    return id[v] == id[w];
}
```

Constant-time client connectivity query

```java
public boolean stronglyConnected(int v, int w) {
    return id[v] == id[w];
}
```

Constant-time client strong-connectivity query
Strong component application: ecological food webs

Food web graph. Vertex = species; edge = from producer to consumer.

http://www.twingroves.district96.k12.il.us/Wetlands/Salamander/SalGraphics/salfoodweb.gif

Strong component. Subset of species with common energy flow.
Strong component application: software modules

Software module dependency graph.
- Vertex = software module.
- Edge: from module to dependency.

Strong component. Subset of mutually interacting modules.
Approach 1. Package strong components together.
Approach 2. Use to improve design!
Strong components algorithms: brief history

1960s: Core OR problem.
• Widely studied; some practical algorithms.
• Complexity not understood.

1972: linear-time DFS algorithm (Tarjan).
• Classic algorithm.
• Level of difficulty: Algs4++.
• Demonstrated broad applicability and importance of DFS.

1980s: easy two-pass linear-time algorithm (Kosaraju-Sharir).
• Forgot notes for lecture; developed algorithm in order to teach it!
• Later found in Russian scientific literature (1972).

1990s: more easy linear-time algorithms.
• Gabow: fixed old OR algorithm.
• Cheriyan-Mehlhorn: needed one-pass algorithm for LEDA.
Kosaraju-Sharir algorithm: intuition

Reverse graph. Strong components in G are same as in G^R.

Kernel DAG. Contract each strong component into a single vertex.

Idea.
- Compute topological order (reverse postorder) in kernel DAG.
- Run DFS, considering vertices in reverse topological order.
Kosaraju-Sharir algorithm demo

Phase 1. Compute reverse postorder in G^R.

Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder of G^R.

digraph G
Kosaraju-Sharir algorithm demo

Phase 1. Compute reverse postorder in G^R.

1 0 2 4 5 3 11 9 12 10 6 7 8

reverse digraph G^R
Kosaraju-Sharir algorithm demo

Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder of G^R.

1 0 2 4 5 3 11 9 12 10 6 7 8

```
<table>
<thead>
<tr>
<th>v</th>
<th>id[]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>7</td>
<td>4</td>
</tr>
<tr>
<td>8</td>
<td>3</td>
</tr>
<tr>
<td>9</td>
<td>2</td>
</tr>
<tr>
<td>10</td>
<td>2</td>
</tr>
<tr>
<td>11</td>
<td>2</td>
</tr>
<tr>
<td>12</td>
<td>2</td>
</tr>
</tbody>
</table>
```
Kosaraju-Sharir algorithm

Simple (but mysterious) algorithm for computing strong components.

- Phase 1: run DFS on G^R to compute reverse postorder.
- Phase 2: run DFS on G, considering vertices in order given by first DFS.

DFS in reverse digraph G^R

0 1 2 3 4 5 6 7 8 9 10 11 12

check unmarked vertices in the order

1 0 2 4 5 3 11 9 12 10 6 7 8

check postorder for use in second dfs()

dfs(0)
dfs(6)
dfs(8)
| check 6
8 done
dfs(7)
| 7 done
6 done
dfs(2)
dfs(4)
dfs(11)
dfs(9)
dfs(12)
| check 11
dfs(10)
| check 9
10 done
12 done
check 7
check 0
check 2
check 3
check 4
check 5
check 6
check 7
check 8
check 9
check 10
check 11
check 12

Kosaraju-Sharir algorithm

Simple (but mysterious) algorithm for computing strong components.

- Phase 1: run DFS on G^R to compute reverse postorder.
- Phase 2: run DFS on G, considering vertices in order given by first DFS.
Kosaraju-Sharir algorithm

Proposition. Kosaraju-Sharir algorithm computes the strong components of a digraph in time proportional to $E + V$.

Pf.

- Running time: bottleneck is running DFS twice (and computing G^R).
- Correctness: tricky, see textbook (2nd printing).
- Implementation: easy!
Connected components in an undirected graph (with DFS)

```java
public class CC {
    private boolean marked[];
    private int[] id;
    private int count;

    public CC(Graph G) {
        marked = new boolean[G.V()];
        id = new int[G.V()];

        for (int v = 0; v < G.V(); v++) {
            if (!marked[v]) {
                dfs(G, v);
                count++;
            }
        }
    }

    private void dfs(Graph G, int v) {
        marked[v] = true;
        id[v] = count;
        for (int w : G.adj(v))
            if (!marked[w])
                dfs(G, w);
    }

    public boolean connected(int v, int w) {
        return id[v] == id[w];
    }
}
```
Strong components in a digraph (with two DFSs)

```java
public class KosarajuSharirSCC {
    private boolean marked[];
    private int[] id;
    private int count;

    public KosarajuSharirSCC(Digraph G) {
        marked = new boolean[G.V()];
        id = new int[G.V()];
        DepthFirstOrder dfs = new DepthFirstOrder(G.reverse());
        for (int v : dfs.reversePostorder()) {
            if (!marked[v]) {
                dfs(G, v);
                count++;
            }
        }
    }

    private void dfs(Digraph G, int v) {
        marked[v] = true;
        id[v] = count;
        for (int w : G.adj(v)) {
            if (!marked[w]) {
                dfs(G, w);
            }
        }
    }

    public boolean stronglyConnected(int v, int w) {
        return id[v] == id[w];
    }
}
```
Digraph-processing summary: algorithms of the day

<table>
<thead>
<tr>
<th>Single-source reachability in a digraph</th>
<th>DFS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Topological sort in a DAG</td>
<td>DFS</td>
</tr>
<tr>
<td>Strong components in a digraph</td>
<td>Kosaraju-Sharir DFS (twice)</td>
</tr>
</tbody>
</table>