4.2 DIRECTED GRAPHS

- introduction
- digraph API
- digraph search
- topological sort
- strong components

Directed graphs

Digraph. Set of vertices connected pairwise by directed edges.

Road network

Vertex = intersection; edge = one-way street.
Political blogosphere graph

Vertex = political blog; edge = link.

The Political Blogosphere and the 2004 U.S. Election: Divided They Blog, Adamic and Glance, 2005

Uber taxi graph

Vertex = taxi pickup; edge = taxi ride.

http://blog.uber.com/2012/01/09/uberdata-san-franciscomis/

Overnight interbank loan graph

Vertex = bank; edge = overnight loan.

The Topology of the Federal Funds Market, Bech and Atalay, 2008

Implication graph

Vertex = variable; edge = logical implication.
Combinational circuit

Vertex = logical gate; edge = wire.

WordNet graph

Vertex = synset; edge = hyponym relationship.

Digraph applications

<table>
<thead>
<tr>
<th>digraph</th>
<th>vertex</th>
<th>directed edge</th>
</tr>
</thead>
<tbody>
<tr>
<td>transportation</td>
<td>street intersection</td>
<td>one-way street</td>
</tr>
<tr>
<td>web</td>
<td>web page</td>
<td>hyperlink</td>
</tr>
<tr>
<td>food web</td>
<td>species</td>
<td>predator-prey relationship</td>
</tr>
<tr>
<td>WordNet</td>
<td>synset</td>
<td>hyponym</td>
</tr>
<tr>
<td>scheduling</td>
<td>task</td>
<td>precedence constraint</td>
</tr>
<tr>
<td>financial</td>
<td>bank</td>
<td>transaction</td>
</tr>
<tr>
<td>cell phone</td>
<td>person</td>
<td>placed call</td>
</tr>
<tr>
<td>infectious disease</td>
<td>person</td>
<td>infection</td>
</tr>
<tr>
<td>game</td>
<td>board position</td>
<td>legal move</td>
</tr>
<tr>
<td>citation</td>
<td>journal article</td>
<td>citation</td>
</tr>
<tr>
<td>object graph</td>
<td>object</td>
<td>pointer</td>
</tr>
<tr>
<td>inheritance hierarchy</td>
<td>class</td>
<td>inherits from</td>
</tr>
<tr>
<td>control flow</td>
<td>code block</td>
<td>jump</td>
</tr>
</tbody>
</table>

Some digraph problems

<table>
<thead>
<tr>
<th>problem</th>
<th>description</th>
</tr>
</thead>
<tbody>
<tr>
<td>s → t path</td>
<td>Is there a path from s to t ?</td>
</tr>
<tr>
<td>shortest s → t path</td>
<td>What is the shortest path from s to t ?</td>
</tr>
<tr>
<td>directed cycle</td>
<td>Is there a directed cycle in the graph ?</td>
</tr>
<tr>
<td>topological sort</td>
<td>Can the digraph be drawn so that all edges point upwards?</td>
</tr>
<tr>
<td>strong connectivity</td>
<td>Is there a directed path between all pairs of vertices ?</td>
</tr>
<tr>
<td>transitive closure</td>
<td>For which vertices v and w is there a directed path from v to w ?</td>
</tr>
<tr>
<td>PageRank</td>
<td>What is the importance of a web page ?</td>
</tr>
</tbody>
</table>
4.2 Directed Graphs

Almost identical to Graph API.

Digraph API

```
public class Digraph

Digraph(int V) create an empty digraph with V vertices
Digraph(In in) create a digraph from input stream
void addEdge(int v, int w) add a directed edge v→w
Iterable<Integer> adj(int v) vertices pointing from v
int V() number of vertices
int E() number of edges
Digraph reverse() reverse of this digraph
String toString() string representation
```

Digraph representation: adjacency lists

Maintain vertex-indexed array of lists.

```
in = new In(args[0]);
Digraph G = new Digraph(in);
for (int v = 0; v < G.V(); v++)
  for (int w : G.adj(v))
    StdOut.println(v + "→" + w);
```

Read digraph from input stream.

Print out each edge (once).

```
tinyDG.txt
V
E
```

```
adj[0] = new int[] {1, 2, 3, 11, 12};
adj[1] = new int[] {1, 2, 6};
adj[2] = new int[] {1, 2};
adj[3] = new int[] {1, 2, 5};
adj[4] = new int[] {4, 12};
adj[5] = new int[] {5};
adj[6] = new int[] {6};
adj[7] = new int[] {7};
adj[8] = new int[] {8};
adj[9] = new int[] {9};
adj[10] = new int[] {10};
adj[12] = new int[] {11, 12};
```
Digraph representations

In practice. Use adjacency-lists representation.
- Algorithms based on iterating over vertices pointing from v.
- Real-world digraphs tend to be sparse.

<table>
<thead>
<tr>
<th>representation</th>
<th>space</th>
<th>insert edge from v to w</th>
<th>edge from v to w?</th>
<th>iterate over vertices pointing from v?</th>
</tr>
</thead>
<tbody>
<tr>
<td>list of edges</td>
<td>E</td>
<td>1</td>
<td>E</td>
<td>E</td>
</tr>
<tr>
<td>adjacency matrix</td>
<td>V^2</td>
<td>1</td>
<td>1</td>
<td>V</td>
</tr>
<tr>
<td>adjacency lists</td>
<td>$E + V$</td>
<td>1</td>
<td>outdegree(v)</td>
<td>outdegree(v)</td>
</tr>
</tbody>
</table>

huge number of vertices, small average vertex degree

1 disallows parallel edges

Adjacency-lists digraph representation: Java implementation

```java
class Digraph {
    private final int V;
    private final Bag<Integer>[] adj;

    public Digraph(int V) {
        this.V = V;
        adj = (Bag<Integer>[]) new Bag[V];
        for (int v = 0; v < V; v++)
            adj[v] = new Bag<Integer>();
    }

    public void addEdge(int v, int w) {
        adj[v].add(w);
    }

    public Iterable<Integer> adj(int v) {
        return adj[v];
    }
}
```

Adjacency-lists graph representation (review): Java implementation

```java
class Graph {
    private final int V;
    private final Bag<Integer>[] adj;

    public Graph(int V) {
        this.V = V;
        adj = (Bag<Integer>[]) new Bag[V];
        for (int v = 0; v < V; v++)
            adj[v] = new Bag<Integer>();
    }

    public void addEdge(int v, int w) {
        adj[v].add(w);
        adj[w].add(v);
    }

    public Iterable<Integer> adj(int v) {
        return adj[v];
    }
}
```

4.2 Directed Graphs

- introduction
- digraph API
- digraph search
- topological sort
- strong components
Reachability

Problem. Find all vertices reachable from \(s \) along a directed path.

Depth-first search in digraphs

Same method as for undirected graphs.
- Every undirected graph is a digraph (with edges in both directions).
- DFS is a digraph algorithm.

DFS (to visit a vertex \(v \))
Mark \(v \) as visited.
 Recursively visit all unmarked vertices \(w \) pointing from \(v \).

Depth-first search demo

To visit a vertex \(v \):
- Mark vertex \(v \) as visited.
- Recursively visit all unmarked vertices pointing from \(v \).

Depth-first search demo

To visit a vertex \(v \):
- Mark vertex \(v \) as visited.
- Recursively visit all unmarked vertices pointing from \(v \).
Depth-first search (in undirected graphs)

Recall code for undirected graphs.

```java
public class DepthFirstSearch {
    private boolean[] marked;

    public DepthFirstSearch(Graph G, int s) {
        marked = new boolean[G.V()];
        dfs(G, s);
    }

    private void dfs(Graph G, int v) {
        marked[v] = true;
        for (int w : G.adj(v))
            if (!marked[w]) dfs(G, w);
    }

    public boolean visited(int v) {
        return marked[v];
    }
}
```

Depth-first search (in directed graphs)

Code for directed graphs identical to undirected one. [substitute Digraph for Graph]

```java
public class DirectedDFS {
    private boolean[] marked;

    public DirectedDFS(Digraph G, int s) {
        marked = new boolean[G.V()];
        dfs(G, s);
    }

    private void dfs(Digraph G, int v) {
        marked[v] = true;
        for (int w : G.adj(v))
            if (!marked[w]) dfs(G, w);
    }

    public boolean visited(int v) {
        return marked[v];
    }
}
```

Reachability application: program control-flow analysis

Every program is a digraph.
- Vertex = basic block of instructions (straight-line program).
- Edge = jump.

Dead-code elimination.
Find (and remove) unreachable code.

Infinite-loop detection.
Determine whether exit is unreachable.

Reachability application: mark-sweep garbage collector

Every data structure is a digraph.
- Vertex = object.
- Edge = reference.

Roots. Objects known to be directly accessible by program (e.g., stack).

Reachable objects. Objects indirectly accessible by program (starting at a root and following a chain of pointers).
Reachability application: mark-sweep garbage collector

Mark-sweep algorithm. [McCarthy, 1960]
- Mark: mark all reachable objects.
- Sweep: if object is unmarked, it is garbage (so add to free list).

Memory cost. Uses 1 extra mark bit per object (plus DFS stack).

Depth-first search in digraphs summary

DFS enables direct solution of simple digraph problems.
- Reachability.
- Path finding.
- Topological sort.
- Directed cycle detection.

Basis for solving difficult digraph problems.
- 2-satisfiability.
- Directed Euler path.
- Strongly-connected components.

Breadth-first search in digraphs

Same method as for undirected graphs.
- Every undirected graph is a digraph (with edges in both directions).
- BFS is a **digraph** algorithm.

Directed breadth-first search demo

Repeat until queue is empty:
- Remove vertex \(v \) from queue.
- Add to queue all unmarked vertices pointing from \(v \) and mark them.

Proposition. BFS computes shortest paths (fewest number of edges) from \(s \) to all other vertices in a digraph in time proportional to \(E + V \).
Directed breadth-first search demo

Repeat until queue is empty:
- Remove vertex \(v \) from queue.
- Add to queue all unmarked vertices pointing from \(v \) and mark them.

```
0  2
  
1  3
  
4

\[ v \text{ edgeTo[] distTo[]} \]
0 - 0
1 0 1
2 0 1
3 4 3
4 2 2
5 3 4
```

\[\text{done} \]

Breadth-first search in digraphs application: web crawler

Goal. Crawl web, starting from some root web page, say www.princeton.edu.

Solution. [BFS with implicit digraph]
- Choose root web page as source \(s \).
- Maintain a Queue of websites to explore.
- Maintain a SET of discovered websites.
- Dequeue the next website and enqueue websites to which it links (provided you haven’t done so before).

Q. Why not use DFS?

Multiple-source shortest paths

Multiple-source shortest paths. Given a digraph and a set of source vertices, find shortest path from any vertex in the set to each other vertex.

Ex. \(S = \{1, 7, 10\} \).
- Shortest path to 4 is \(7 \rightarrow 6 \rightarrow 4 \).
- Shortest path to 5 is \(7 \rightarrow 6 \rightarrow 0 \rightarrow 5 \).
- Shortest path to 12 is \(10 \rightarrow 12 \).
- ...

Q. How to implement multi-source shortest paths algorithm?
A. Use BFS, but initialize by enqueuing all source vertices.

Bare-bones web crawler: Java implementation

```
Queue<String> queue = new Queue<String>();
SET<String> marked = new SET<String>();

String root = "http://www.princeton.edu";
queue.enqueue(root);
marked.add(root);

while (!queue.isEmpty())
{
    String v = queue.dequeue();
    StdOut.println(v);
    In in = new In(v);
    String input = in.readAll();

    String regexp = "http://(\w+\.)+(\w)";
    Pattern pattern = Pattern.compile(regexp);
    Matcher matcher = pattern.matcher(input);
    while (matcher.find())
    {
        String w = matcher.group();
        if (!marked.contains(w))
        {
            marked.add(w);
            queue.enqueue(w);
        }
    }
}
```

![Queue of websites to crawl](queue.png)

![Set of marked websites](set.png)

![Start crawling from root website](start.png)

![Read in raw HTML from next website in queue](read.png)

![Use regular expression to find all URLs in website of form http://xxx.yyy.zzz](regex.png)

[crude pattern misses relative URLs]

![If unmarked, mark it and put on the queue](mark.png)
Precedence scheduling

Goal. Given a set of tasks to be completed with precedence constraints, in which order should we schedule the tasks?

Digraph model. vertex = task; edge = precedence constraint.

Topological sort

DAG. Directed acyclic graph.

Topological sort. Redraw DAG so all edges point upwards.

Solution. DFS. What else?
Topological sort demo

- Run depth-first search.
- Return vertices in reverse postorder.

Topological sort demo

- Run depth-first search.
- Return vertices in reverse postorder.

tinyDAG7.txt

```
0
  /\  \
 2 5  \\
 /  \  \\  
1  4  3
  \  /  \\
    \  /  \\
    0 6  3

a directed acyclic graph
```

Why does topological sort algorithm work?
- First vertex in postorder has outdegree 0.
- Second-to-last vertex in postorder can only point to last vertex.

Topological sort in a DAG: intuition

Why does topological sort algorithm work?
- First vertex in postorder has outdegree 0.
- Second-to-last vertex in postorder can only point to last vertex.

Depth-first search order

```
public class DepthFirstOrder {
    private boolean[] marked;
    private Stack<Integer> reversePostorder;

    public DepthFirstOrder(Digraph G) {
        reversePostorder = new Stack<Integer>();
        marked = new boolean[G.V()];
        for (int v = 0; v < G.V(); v++)
            if (!marked[v]) dfs(G, v);

        private void dfs(Digraph G, int v) {
            marked[v] = true;
            for (int w : G.adj(v))
                if (!marked[w]) dfs(G, w);
            reversePostorder.push(v);
        }

    public Iterable<Integer> reversePostorder() {
        return reversePostorder;
    }
}
```

returns all vertices in "reverse DFS postorder"
Topological sort in a DAG: correctness proof

Proposition. Reverse DFS postorder of a DAG is a topological order.

Pf. Consider any edge \(v \rightarrow w \). When \(\text{dfs}(v) \) is called:

- **Case 1:** \(\text{dfs}(w) \) has already been called and returned. Thus, \(w \) was done before \(v \).

- **Case 2:** \(\text{dfs}(w) \) has not yet been called. \(\text{dfs}(w) \) will get called directly or indirectly by \(\text{dfs}(v) \) and will finish before \(\text{dfs}(v) \). Thus, \(w \) will be done before \(v \).

- **Case 3:** \(\text{dfs}(w) \) has already been called, but has not yet returned. Can’t happen in a DAG: function call stack contains path from \(w \) to \(v \), so \(v \rightarrow w \) would complete a cycle.

Directed cycle detection application: precedence scheduling

Scheduling. Given a set of tasks to be completed with precedence constraints, in what order should we schedule the tasks?

<table>
<thead>
<tr>
<th>Task</th>
<th>Department</th>
<th>Course</th>
<th>Description</th>
<th>Prereqs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Task 3</td>
<td>Computer Science</td>
<td>CPSC 432</td>
<td>Intermediate Compiler Design, with a Focus on Dependency Resolution</td>
<td>CPSC 432</td>
</tr>
</tbody>
</table>

http://xkcd.com/754

Remark. A directed cycle implies scheduling problem is infeasible.

Directed cycle detection application: cyclic inheritance

The Java compiler does cycle detection.

```java
public class A extends B {
    ...
}
```

```bash
% javac A.java
A.java:1: cyclic inheritance involving A
  public class A extends B {
    ...
  }
  1 error
```

```java
public class B extends C {
    ...
}
```

```java
public class C extends A {
    ...
}
```
Directed cycle detection application: spreadsheet recalculation

Microsoft Excel does cycle detection (and has a circular reference toolbar)

![Screenshot of Microsoft Excel with a circular reference error message]

Depth-first search orders

Observation. DFS visits each vertex exactly once. The order in which it does so can be important.

Orderings.
- **Preorder:** order in which \(\text{dfs()} \) is called.
- **Postorder:** order in which \(\text{dfs()} \) returns.
- **Reverse postorder:** reverse order in which \(\text{dfs()} \) returns.

```java
private void dfs(Graph G, int v)
{
    marked[v] = true;
    preorder.enqueue(v);
    for (int w : G.adj(v))
    {
        if (!marked[w])
            dfs(G, w);
        postorder.enqueue(v);
    }
}
```

Strongly-connected components

Def. Vertices \(v \) and \(w \) are **strongly connected** if there is both a directed path from \(v \) to \(w \) and a directed path from \(w \) to \(v \).

Key property. Strong connectivity is an equivalence relation:
- \(v \) is strongly connected to \(v \).
- If \(v \) is strongly connected to \(w \), then \(w \) is strongly connected to \(v \).
- If \(v \) is strongly connected to \(w \) and \(w \) to \(x \), then \(v \) is strongly connected to \(x \).

Def. A **strong component** is a maximal subset of strongly-connected vertices.

![Diagram of a directed graph with 5 strongly-connected components]
Connected components vs. strongly-connected components

v and w are connected if there is a path between v and w

v and w are strongly connected if there is both a directed path from v to w and a directed path from w to v

v and w are strongly connected if there is both a directed path from v to w and a directed path from w to v

Strong component application: ecological food webs

Food web graph. Vertex = species; edge = from producer to consumer.

Strong component application: software modules

Software module dependency graph.

- Vertex = software module.
- Edge: from module to dependency.

Strong component. Subset of mutually interacting modules.

Approach 1. Package strong components together.

Approach 2. Use to improve design!

Strong components algorithms: brief history

1960s: Core OR problem.

- Widely studied; some practical algorithms.
- Complexity not understood.

1972: linear-time DFS algorithm (Tarjan).

- Classic algorithm.
- Level of difficulty: Algs4++.
- Demonstrated broad applicability and importance of DFS.

1980s: easy two-pass linear-time algorithm (Kosaraju-Sharir).

- Forgot notes for lecture; developed algorithm in order to teach it!
- Later found in Russian scientific literature (1972).

1990s: more easy linear-time algorithms.

- Gabow: fixed old OR algorithm.
- Cheriyan-Mehlhorn: needed one-pass algorithm for LEDA.
Kosaraju-Sharir algorithm: intuition

Reverse graph. Strong components in \(G \) are same as in \(G^R \).

Kernel DAG. Contract each strong component into a single vertex.

Idea.
- Compute topological order (reverse postorder) in kernel DAG.
- Run DFS, considering vertices in reverse topological order.

Kosaraju-Sharir algorithm demo

Phase 1. Compute reverse postorder in \(G^R \).

Phase 2. Run DFS in \(G \), visiting unmarked vertices in reverse postorder of \(G^R \).

Kosaraju-Sharir algorithm demo

Phase 1. Compute reverse postorder in \(G^R \).

1 0 2 4 5 3 11 9 12 10 6 7 8

reverse digraph \(G^R \)

Kosaraju-Sharir algorithm demo

Phase 2. Run DFS in \(G \), visiting unmarked vertices in reverse postorder of \(G^R \).

1 0 2 4 5 3 11 9 12 10 6 7 8

\(v \) \(id[] \)

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>7</td>
<td>4</td>
</tr>
<tr>
<td>8</td>
<td>3</td>
</tr>
<tr>
<td>9</td>
<td>2</td>
</tr>
<tr>
<td>10</td>
<td>2</td>
</tr>
<tr>
<td>11</td>
<td>2</td>
</tr>
<tr>
<td>12</td>
<td>2</td>
</tr>
</tbody>
</table>
Kosaraju-Sharir algorithm

Simple (but mysterious) algorithm for computing strong components.
- Phase 1: run DFS on G^R to compute reverse postorder.
- Phase 2: run DFS on G, considering vertices in order given by first DFS.

DFS in reverse digraph G^R

check unmarked vertices in the order
0 1 2 3 4 5 6 7 8 9 10 11 12
reverse postorder for use in second dfs()
1 0 2 4 5 3 11 9 12 10 6 7 8

Proposition. Kosaraju-Sharir algorithm computes the strong components of a digraph in time proportional to $E + V$.

Pf.
- Running time: bottleneck is running DFS twice (and computing G^R).
- Correctness: tricky, see textbook (2nd printing).
- Implementation: easy!

Connected components in an undirected graph (with DFS)

public class CC {
 private boolean marked[];
 private int[] id;
 private int count;
 public CC(Graph G) {
 marked = new boolean[G.V()];
 id = new int[G.V()];
 for (int v = 0; v < G.V(); v++)
 if (!marked[v])
 dfs(G, v);
 }

 private void dfs(Graph G, int v) {
 marked[v] = true;
 id[v] = count;
 for (int w : G.adj(v))
 if (!marked[w])
 dfs(G, w);
 }

 public boolean connected(int v, int w) {
 return id[v] == id[w];
 }
}
Strong components in a digraph (with two DFSs)

```java
public class KosarajuSharirSCC
{
    private boolean marked[];
    private int[] id;
    private int count;

    public KosarajuSharirSCC(Digraph G)
    {
        marked = new boolean[G.V()];
        id = new int[G.V()];
        DepthFirstOrder dfs = new DepthFirstOrder(G.reverse());
        for (int v : dfs.reversePostorder())
        {
            if (!marked[v])
            {
                dfs(G, v);
                count++;
            }
        }
    }

    private void dfs(Digraph G, int v)
    {
        marked[v] = true;
        id[v] = count;
        for (int w : G.adj(v))
        {
            if (!marked[w])
            {
                dfs(G, w);
            }
        }
    }

    public boolean stronglyConnected(int v, int w)
    {
        return id[v] == id[w];
    }
}
```

Digraph-processing summary: algorithms of the day

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single-source reachability in a digraph</td>
<td>DFS</td>
</tr>
<tr>
<td>Topological sort in a DAG</td>
<td>DFS</td>
</tr>
<tr>
<td>Strong components in a digraph</td>
<td>Kosaraju-Sharir DFS (twice)</td>
</tr>
</tbody>
</table>