3.4 Hash Tables

- hash functions
- separate chaining
- linear probing
- context
Symbol table implementations: summary

<table>
<thead>
<tr>
<th>implementation</th>
<th>guarantee</th>
<th>average case</th>
<th>ordered ops?</th>
<th>key interface</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>search</td>
<td>insert</td>
<td>delete</td>
<td>search hit</td>
</tr>
<tr>
<td>sequential search</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>$\frac{1}{2}N$</td>
</tr>
<tr>
<td>(unordered list)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>binary search</td>
<td>$\log N$</td>
<td>N</td>
<td>N</td>
<td>$\log N$</td>
</tr>
<tr>
<td>(ordered array)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BST</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>$1.39 \log N$</td>
</tr>
<tr>
<td>red-black BST</td>
<td>$2 \log N$</td>
<td>$2 \log N$</td>
<td>$2 \log N$</td>
<td>$1.0 \log N$</td>
</tr>
</tbody>
</table>

Q. Can we do better?
A. Yes, but with different access to the data.
Hashing: basic plan

Save items in a **key-indexed table** (index is a function of the key).

Hash function. Method for computing array index from key.

```
hash("it") = 3
```

```
hash("times") = 3
```

Issues.

- Computing the hash function.
- Equality test: Method for checking whether two keys are equal.
- Collision resolution: Algorithm and data structure to handle two keys that hash to the same array index.

Classic space-time tradeoff.

- No space limitation: trivial hash function with key as index.
- No time limitation: trivial collision resolution with sequential search.
- Space and time limitations: hashing (the real world).
3.4 Hash Tables

- hash functions
- separate chaining
- linear probing
- context
Computing the hash function

Idealistic goal. Scramble the keys uniformly to produce a table index.
- Efficiently computable.
- Each table index equally likely for each key.

Ex 1. Phone numbers.
- Bad: first three digits.
- Better: last three digits.

Ex 2. Social Security numbers.
- Bad: first three digits.
- Better: last three digits.

Practical challenge. Need different approach for each key type.
Java’s hash code conventions

All Java classes inherit a method `hashCode()`, which returns a 32-bit `int`.

Requirement. If `x.equals(y)`, then `(x.hashCode()) == (y.hashCode())`.

Highly desirable. If `!x.equals(y)`, then `(x.hashCode()) != (y.hashCode())`.

Default implementation. Memory address of `x`.

Legal (but poor) implementation. Always return 17.

Customized implementations. Integer, Double, String, File, URL, Date, ...

User-defined types. Users are on their own.
Implementing hash code: integers, booleans, and doubles

Java library implementations

```java
public final class Integer {
    private final int value;
    ...

    public int hashCode() {
        return value;
    }
}
```

```java
public final class Double {
    private final double value;
    ...

    public int hashCode() {
        long bits = doubleToLongBits(value);
        return (int) (bits ^ (bits >>> 32));
    }
}
```

```java
public final class Boolean {
    private final boolean value;
    ...

    public int hashCode() {
        if (value) return 1231;
        else return 1237;
    }
}
```

convert to IEEE 64-bit representation;
xor most significant 32-bits
with least significant 32-bits

Warning: -0.0 and +0.0 have different hash codes
Implementing hash code: strings

Java library implementation

```java
public final class String {
    private final char[] s;
    ...

    public int hashCode() {
        int hash = 0;
        for (int i = 0; i < length(); i++)
            hash = s[i] + (31 * hash);
        return hash;
    }
}
```

<table>
<thead>
<tr>
<th>char</th>
<th>Unicode</th>
</tr>
</thead>
<tbody>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>'a'</td>
<td>97</td>
</tr>
<tr>
<td>'b'</td>
<td>98</td>
</tr>
<tr>
<td>'c'</td>
<td>99</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

- Horner's method to hash string of length L: L multiplies/adds.
- Equivalent to $h = s[0] \cdot 31^{L-1} + \ldots + s[L-3] \cdot 31^2 + s[L-2] \cdot 31^1 + s[L-1] \cdot 31^0$.

Ex. String $s = "call"$; $\text{int code} = s$.hashCode(); $3045982 = 99 \cdot 31^3 + 97 \cdot 31^2 + 108 \cdot 31^1 + 108 \cdot 31^0$

\[
= 108 + 31 \cdot (108 + 31 \cdot (97 + 31 \cdot (99))) \\
\text{(Horner's method)}
\]
Implementing hash code: strings

Performance optimization.
- Cache the hash value in an instance variable.
- Return cached value.

```java
public final class String {
    private int hash = 0;
    private final char[] s;
    ...

    public int hashCode() {
        int h = hash;
        if (h != 0) return h;
        for (int i = 0; i < length(); i++)
            h = s[i] + (31 * h);
        hash = h;
        return h;
    }
}
```

Q. What if `hashCode()` of string is 0?
Implementing hash code: user-defined types

```java
public final class Transaction implements Comparable<Transaction> {
    private final String who;
    private final Date when;
    private final double amount;

    public Transaction(String who, Date when, double amount) {
        /* as before */
    }

    ...}

    public boolean equals(Object y) {
        /* as before */
    }

    public int hashCode() {
        int hash = 17;
        hash = 31*hash + who.hashCode();
        hash = 31*hash + when.hashCode();
        hash = 31*hash + ((Double) amount).hashCode();
        return hash;
    }
}
```

- Typically a small prime
- Nonzero constant
- For reference types, use `hashCode()`
- For primitive types, use `hashCode()` of wrapper type
Hash code design

"Standard" recipe for user-defined types.
- Combine each significant field using the $31x + y$ rule.
- If field is a primitive type, use wrapper type `hashCode()`.
- If field is `null`, return 0.
- If field is a reference type, use `hashCode()`.
- If field is an array, apply to each entry.

In practice. Recipe works reasonably well; used in Java libraries.

In theory. Keys are bitstring; "universal" hash functions exist.

Basic rule. Need to use the whole key to compute hash code; consult an expert for state-of-the-art hash codes.
Modular hashing

Hash code. An int between -2^{31} and $2^{31} - 1$.

Hash function. An int between 0 and $M - 1$ (for use as array index).

typically a prime or power of 2

```java
private int hash(Key key)
{  return key.hashCode() % M;  }
```

bug

```java
private int hash(Key key)
{  return Math.abs(key.hashCode()) % M;  }
```

1-in-a-billion bug

`hashCode()` of "polygenelubricants" is -2^{31}

```java
private int hash(Key key)
{  return (key.hashCode() & 0xffffffff) % M;  }
```
correct
Uniform hashing assumption

Uniform hashing assumption. Each key is equally likely to hash to an integer between 0 and $M - 1$.

Bins and balls. Throw balls uniformly at random into M bins.

Birthday problem. Expect two balls in the same bin after $\sim \sqrt{\pi M / 2}$ tosses.

Coupon collector. Expect every bin has ≥ 1 ball after $\sim M \ln M$ tosses.

Load balancing. After M tosses, expect most loaded bin has $\Theta (\log M / \log \log M)$ balls.
Uniform hashing assumption

Uniform hashing assumption. Each key is equally likely to hash to an integer between 0 and $M - 1$.

Bins and balls. Throw balls uniformly at random into M bins.

Hash value frequencies for words in Tale of Two Cities ($M = 97$)

Java's `String` data uniformly distribute the keys of Tale of Two Cities
3.4 Hash Tables

- hash functions
- separate chaining
- linear probing
- context
Collisions

Collision. Two distinct keys hashing to same index.
- Birthday problem \Rightarrow can't avoid collisions unless you have a ridiculous (quadratic) amount of memory.
- Coupon collector + load balancing \Rightarrow collisions are evenly distributed.

Challenge. Deal with collisions efficiently.
Separate-chaining symbol table

Use an array of $M < N$ linked lists. [H. P. Luhn, IBM 1953]

- Hash: map key to integer i between 0 and $M - 1$.
- Insert: put at front of i^{th} chain (if not already there).
- Search: need to search only i^{th} chain.
Separate-chaining symbol table: Java implementation

```
public class SeparateChainingHashST<Key, Value> {
    private int M = 97; // number of chains
    private Node[] st = new Node[M]; // array of chains

    private static class Node {
        private Object key;
        private Object val;
        private Node next;
    }

    private int hash(Key key) {
        return (key.hashCode() & 0x7fffffff) % M;
    }

    public Value get(Key key) {
        int i = hash(key);
        for (Node x = st[i]; x != null; x = x.next)
            if (key.equals(x.key)) return (Value) x.val;
        return null;
    }
}
```
Separate-chaining symbol table: Java implementation

```java
class SeparateChainingHashST<Key, Value>
{
    private int M = 97; // number of chains
    private Node[] st = new Node[M]; // array of chains

    private static class Node
    {
        private Object key;
        private Object val;
        private Node next;
        ...
    }

    private int hash(Key key)
    { return (key.hashCode() & 0xffffffff) % M; }

    public void put(Key key, Value val) {
        int i = hash(key);
        for (Node x = st[i]; x != null; x = x.next)
            if (key.equals(x.key)) { x.val = val; return; }
        st[i] = new Node(key, val, st[i]);
    }
}
```
Analysis of separate chaining

Proposition. Under uniform hashing assumption, prob. that the number of keys in a list is within a constant factor of N/M is extremely close to 1.

Pf sketch. Distribution of list size obeys a binomial distribution.

Consequence. Number of probes for search/insert is proportional to N/M.

- M too large \Rightarrow too many empty chains.
- M too small \Rightarrow chains too long.
- Typical choice: $M \sim N/4 \Rightarrow$ constant-time ops.
Resizing in a separate-chaining hash table

Goal. Average length of list $N / M = \text{constant}$.
- Double size of array M when $N / M \geq 8$.
- Halve size of array M when $N / M \leq 2$.
- Need to rehash all keys when resizing.

x.hashCode() does not change but hash(x) can change

before resizing

after resizing
Deletion in a separate-chaining hash table

Q. How to delete a key (and its associated value)?
A. Easy: need only consider chain containing key.

before deleting C

after deleting C

```plaintext
Deletion in a separate-chaining hash table

Q. How to delete a key (and its associated value)?
A. Easy: need only consider chain containing key.

before deleting C

after deleting C

```
Symbol table implementations: summary

<table>
<thead>
<tr>
<th>implementation</th>
<th>guarantee</th>
<th>average case</th>
<th>ordered ops?</th>
<th>key interface</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>search</td>
<td>insert</td>
<td>delete</td>
<td>search hit</td>
</tr>
<tr>
<td>sequential search (unordered list)</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>$\frac{1}{2} N$</td>
</tr>
<tr>
<td>binary search (ordered array)</td>
<td>$\log N$</td>
<td>N</td>
<td>N</td>
<td>$\log N$</td>
</tr>
<tr>
<td>BST</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>$1.39 \log N$</td>
</tr>
<tr>
<td>red-black BST</td>
<td>$2 \log N$</td>
<td>$2 \log N$</td>
<td>$2 \log N$</td>
<td>$1.0 \log N$</td>
</tr>
<tr>
<td>separate chaining</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>$3-5 *$</td>
</tr>
</tbody>
</table>

* under uniform hashing assumption
3.4 Hash Tables

- hash functions
- separate chaining
- linear probing
- context
Collision resolution: open addressing


```
<table>
<thead>
<tr>
<th>st[0]</th>
<th>jocularly</th>
</tr>
</thead>
<tbody>
<tr>
<td>st[1]</td>
<td>null</td>
</tr>
<tr>
<td>st[2]</td>
<td>listen</td>
</tr>
<tr>
<td>st[3]</td>
<td>suburban</td>
</tr>
<tr>
<td>...</td>
<td>null</td>
</tr>
<tr>
<td>st[30000]</td>
<td>browsing</td>
</tr>
</tbody>
</table>
```

linear probing (M = 30001, N = 15000)
Linear-probing hash table demo

Hash. Map key to integer i between 0 and $M-1$.

Insert. Put at table index i if free; if not try $i+1$, $i+2$, etc.

linear-probing hash table

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>st[]</td>
<td></td>
</tr>
</tbody>
</table>

$M = 16$
Linear-probing hash table demo

Hash. Map key to integer \(i \) between 0 and \(M-1 \).

Search. Search table index \(i \); if occupied but no match, try \(i+1 \), \(i+2 \), etc.

```
search K
hash(K) = 5
```

<table>
<thead>
<tr>
<th>st[]</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>P</td>
<td>M</td>
<td></td>
<td>A</td>
<td>C</td>
<td>S</td>
<td>H</td>
<td>L</td>
<td></td>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(M = 16 \)

search miss
(return null)
Linear-probing hash table summary

Hash. Map key to integer \(i \) between 0 and \(M-1 \).

Insert. Put at table index \(i \) if free; if not try \(i+1 \), \(i+2 \), etc.

Search. Search table index \(i \); if occupied but no match, try \(i+1 \), \(i+2 \), etc.

Note. Array size \(M \) **must be** greater than number of key-value pairs \(N \).

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>s[i]</td>
<td>P</td>
<td>M</td>
<td>A</td>
<td>C</td>
<td>S</td>
<td>H</td>
<td>L</td>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>R</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

\(M = 16 \)
public class LinearProbingHashST<Key, Value> {
 private int M = 30001;
 private Value[] vals = (Value[]) new Object[M];
 private Key[] keys = (Key[]) new Object[M];
 private int hash(Key key) {
 return key.hashCode() & (M - 1);
 }
 private void put(Key key, Value val) {
 for (int i = hash(key); keys[i] != null; i = (i+1) % M)
 if (key.equals(keys[i]))
 return vals[i];
 return null;
 }
 public Value get(Key key)
 {
 for (int i = hash(key); keys[i] != null; i = (i+1) % M)
 if (key.equals(keys[i]))
 return vals[i];
 return null;
 }
}

Linear-probing symbol table: Java implementation

array doubling and halving code omitted
public class LinearProbingHashST<Key, Value> {
 private int M = 30001;
 private Value[] vals = (Value[]) new Object[M];
 private Key[] keys = (Key[]) new Object[M];

 private int hash(Key key) { /* as before */ }

 private Value get(Key key) { /* previous slide */ }

 public void put(Key key, Value val) {
 int i;
 for (i = hash(key); keys[i] != null; i = (i+1) % M)
 if (keys[i].equals(key))
 break;
 keys[i] = key;
 vals[i] = val;
 }
}

Linear-probing symbol table: Java implementation
Clustering

Cluster. A contiguous block of items.
Observation. New keys likely to hash into middle of big clusters.
Knuth's parking problem

Model. Cars arrive at one-way street with M parking spaces. Each desires a random space i: if space i is taken, try $i + 1$, $i + 2$, etc.

Q. What is mean displacement of a car?

Half-full. With $M/2$ cars, mean displacement is $\sim 3/2$.

Full. With M cars, mean displacement is $\sim \sqrt{\pi M/8}$.
Analysis of linear probing

Proposition. Under uniform hashing assumption, the average # of probes in a linear probing hash table of size M that contains $N = \alpha M$ keys is:

$$\sim \frac{1}{2} \left(1 + \frac{1}{1 - \alpha}\right)$$

for search hit

$$\sim \frac{1}{2} \left(1 + \frac{1}{(1 - \alpha)^2}\right)$$

for search miss / insert

Pf.

Parameters.

- M too large \Rightarrow too many empty array entries.
- M too small \Rightarrow search time blows up.
- Typical choice: $\alpha = N / M \sim 1/2$. # probes for search hit is about $3/2$
 # probes for search miss is about $5/2$
Resizing in a linear-probing hash table

Goal. Average length of list $N / M \leq \frac{1}{2}$.

- Double size of array M when $N / M \geq \frac{1}{2}$.
- Halve size of array M when $N / M \leq \frac{1}{8}$.
- Need to rehash all keys when resizing.

before resizing

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>keys[]</td>
<td>E</td>
<td>S</td>
<td></td>
<td></td>
<td>R</td>
<td>A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>vals[]</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
<td>3</td>
<td>2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

after resizing

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>keys[]</td>
<td></td>
<td></td>
<td>A</td>
<td>S</td>
<td></td>
<td></td>
<td>E</td>
<td></td>
<td>R</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>vals[]</td>
<td></td>
<td></td>
<td>2</td>
<td>0</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Deletion in a linear-probing hash table

Q. How to delete a key (and its associated value)?

A. Requires some care: can't just delete array entries.

<table>
<thead>
<tr>
<th>keys[]</th>
<th>P</th>
<th>M</th>
<th>A</th>
<th>C</th>
<th>S</th>
<th>H</th>
<th>L</th>
<th>E</th>
<th>R</th>
<th>X</th>
</tr>
</thead>
<tbody>
<tr>
<td>vals[]</td>
<td>10</td>
<td>9</td>
<td>8</td>
<td>4</td>
<td>0</td>
<td>5</td>
<td>11</td>
<td>12</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

before deleting S

<table>
<thead>
<tr>
<th>keys[]</th>
<th>P</th>
<th>M</th>
<th>A</th>
<th>C</th>
<th>S</th>
<th>H</th>
<th>L</th>
<th>E</th>
<th>R</th>
<th>X</th>
</tr>
</thead>
<tbody>
<tr>
<td>vals[]</td>
<td>10</td>
<td>9</td>
<td>8</td>
<td>4</td>
<td>0</td>
<td>5</td>
<td>11</td>
<td>12</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

after deleting S?

<table>
<thead>
<tr>
<th>keys[]</th>
<th>P</th>
<th>M</th>
<th>A</th>
<th>C</th>
<th>H</th>
<th>L</th>
<th>E</th>
<th>R</th>
<th>X</th>
</tr>
</thead>
<tbody>
<tr>
<td>vals[]</td>
<td>10</td>
<td>9</td>
<td>8</td>
<td>4</td>
<td>5</td>
<td>11</td>
<td>12</td>
<td>3</td>
<td>7</td>
</tr>
</tbody>
</table>

doesn't work, e.g., if hash(H) = 4
ST implementations: summary

<table>
<thead>
<tr>
<th>implementation</th>
<th>guarantee</th>
<th>average case</th>
<th>ordered ops?</th>
<th>key interface</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>search</td>
<td>insert</td>
<td>delete</td>
<td>search hit</td>
</tr>
<tr>
<td>sequential search</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>½ N</td>
</tr>
<tr>
<td>(unordered list)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>binary search</td>
<td>1g N</td>
<td>N</td>
<td>N</td>
<td>1g N</td>
</tr>
<tr>
<td>(ordered array)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BST</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>1.39 lg N</td>
</tr>
<tr>
<td>red-black BST</td>
<td>2 lg N</td>
<td>2 lg N</td>
<td>2 lg N</td>
<td>1.0 lg N</td>
</tr>
<tr>
<td>separate chaining</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>3-5 *</td>
</tr>
<tr>
<td>linear probing</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>3-5 *</td>
</tr>
</tbody>
</table>

* under uniform hashing assumption
3.4 Hash Tables

- hash functions
- separate chaining
- linear probing
- context
War story: algorithmic complexity attacks

Q. Is the uniform hashing assumption important in practice?
A. Obvious situations: aircraft control, nuclear reactor, pacemaker.
A. Surprising situations: denial-of-service attacks.

Real-world exploits. [Crosby-Wallach 2003]
- Bro server: send carefully chosen packets to DOS the server, using less bandwidth than a dial-up modem.
- Perl 5.8.0: insert carefully chosen strings into associative array.
- Linux 2.4.20 kernel: save files with carefully chosen names.
War story: algorithmic complexity attacks

A Java bug report.

<table>
<thead>
<tr>
<th>Jan Lieskovsky 2011-11-01 10:13:47 EDT</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Julian Wälde and Alexander Klink reported that the String.hashCode() hash function is not sufficiently collision resistant. hashCode() value is used in the implementations of HashMap and Hashtable classes:</td>
<td></td>
</tr>
</tbody>
</table>

http://docs.oracle.com/javase/6/docs/api/java/util/HashMap.html
http://docs.oracle.com/javase/6/docs/api/java/util/Hashtable.html

A specially-crafted set of keys could trigger hash function collisions, which can degrade performance of HashMap or Hashtable by changing hash table operations complexity from an expected/average $O(1)$ to the worst case $O(n)$. Reporters were able to find colliding strings efficiently using equivalent substrings and meet in the middle techniques.

This problem can be used to start a denial of service attack against Java applications that use untrusted inputs as HashMap or Hashtable keys. An example of such application is web application server (such as tomcat, see bug #750521) that may fill hash tables with data from HTTP request (such as GET or POST parameters). A remote attack could use that to make JVM use excessive amount of CPU time by sending a POST request with large amount of parameters which hash to the same value.

This problem is similar to the issue that was previously reported for and fixed in e.g. perl:

Algorithmic complexity attack on Java

Goal. Find family of strings with the same hash code.

Solution. The base-31 hash code is part of Java's string API.

<table>
<thead>
<tr>
<th>key</th>
<th>hashCode()</th>
</tr>
</thead>
<tbody>
<tr>
<td>"Aa"</td>
<td>2112</td>
</tr>
<tr>
<td>"BB"</td>
<td>2112</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>key</th>
<th>hashCode()</th>
</tr>
</thead>
<tbody>
<tr>
<td>"AaAaaAaAa"</td>
<td>-540425984</td>
</tr>
<tr>
<td>"AaAaaAaBb"</td>
<td>-540425984</td>
</tr>
<tr>
<td>"AaAaaBBAa"</td>
<td>-540425984</td>
</tr>
<tr>
<td>"AaAaaBBBB"</td>
<td>-540425984</td>
</tr>
<tr>
<td>"AaBBAaaAa"</td>
<td>-540425984</td>
</tr>
<tr>
<td>"AaBBAaaBB"</td>
<td>-540425984</td>
</tr>
<tr>
<td>"AaBBBaaAa"</td>
<td>-540425984</td>
</tr>
<tr>
<td>"AaBBaaBBB"</td>
<td>-540425984</td>
</tr>
<tr>
<td>"AaBBBBaB"</td>
<td>-540425984</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>key</th>
<th>hashCode()</th>
</tr>
</thead>
<tbody>
<tr>
<td>"BBAaaAaAa"</td>
<td>-540425984</td>
</tr>
<tr>
<td>"BBAaaAaBb"</td>
<td>-540425984</td>
</tr>
<tr>
<td>"BBAaaBBAa"</td>
<td>-540425984</td>
</tr>
<tr>
<td>"BBAaaBBBB"</td>
<td>-540425984</td>
</tr>
<tr>
<td>"BdaaBAAaAa"</td>
<td>-540425984</td>
</tr>
<tr>
<td>"BdaaBAAaBB"</td>
<td>-540425984</td>
</tr>
<tr>
<td>"BdaaaBBAaAa"</td>
<td>-540425984</td>
</tr>
<tr>
<td>"BdaaBAAAaa"</td>
<td>-540425984</td>
</tr>
<tr>
<td>"BdaaBBBBAB"</td>
<td>-540425984</td>
</tr>
</tbody>
</table>

2^N strings of length $2N$ that hash to same value!
Diversion: one-way hash functions

One-way hash function. "Hard" to find a key that will hash to a desired value (or two keys that hash to same value).

Ex. MD4, MD5, SHA-0, SHA-1, SHA-2, WHIRLPOOL, RIPEMD-160,

known to be insecure

```
String password = args[0];
MessageDigest sha1 = MessageDigest.getInstance("SHA1");
byte[] bytes = sha1.digest(password);

/* prints bytes as hex string */
```
Separate chaining vs. linear probing

Separate chaining.
- Performance degrades gracefully.
- Clustering less sensitive to poorly-designed hash function.

Linear probing.
- Less wasted space.
- Better cache performance.
Hashing: variations on the theme

Many improved versions have been studied.

Two-probe hashing. [separate-chaining variant]
- Hash to two positions, insert key in shorter of the two chains.
- Reduces expected length of the longest chain to $\log \log N$.

Double hashing. [linear-probing variant]
- Use linear probing, but skip a variable amount, not just 1 each time.
- Effectively eliminates clustering.
- Can allow table to become nearly full.
- More difficult to implement delete.

Cuckoo hashing. [linear-probing variant]
- Hash key to two positions; insert key into either position; if occupied, reinsert displaced key into its alternative position (and recur).
- Constant worst-case time for search.
Hash tables vs. balanced search trees

Hash tables.

• Simpler to code.
• No effective alternative for unordered keys.
• Faster for simple keys (a few arithmetic ops versus \(\log N \) compares).
• Better system support in Java for strings (e.g., cached hash code).

Balanced search trees.

• Stronger performance guarantee.
• Support for ordered ST operations.
• Easier to implement compareTo() correctly than equals() and hashCode().

Java system includes both.

• Red-black BSTs: java.util.TreeMap, java.util.TreeSet.
• Hash tables: java.util.HashMap, java.util.IdentityHashMap.