2.4 Priority Queues

- API and elementary implementations
- binary heaps
- heapsort
- event-driven simulation
2.4 Priority Queues

- API and elementary implementations
- binary heaps
- heapsort
- event-driven simulation
Collections

A collection is a data types that store groups of items.

<table>
<thead>
<tr>
<th>data type</th>
<th>key operations</th>
<th>data structure</th>
</tr>
</thead>
<tbody>
<tr>
<td>stack</td>
<td>PUSH, POP</td>
<td>linked list, resizing array</td>
</tr>
<tr>
<td>queue</td>
<td>ENQUEUE, DEQUEUE</td>
<td>linked list, resizing array</td>
</tr>
<tr>
<td>priority queue</td>
<td>INSERT, DELETE-MAX</td>
<td>binary heap</td>
</tr>
<tr>
<td>symbol table</td>
<td>PUT, GET, DELETE</td>
<td>BST, hash table</td>
</tr>
<tr>
<td>set</td>
<td>ADD, CONTAINS, DELETE</td>
<td>BST, hash table</td>
</tr>
</tbody>
</table>

“Show me your code and conceal your data structures, and I shall continue to be mystified. Show me your data structures, and I won't usually need your code; it'll be obvious.” — Fred Brooks
Priority queue

Collections. Insert and delete items. Which item to delete?

Stack. Remove the item most recently added.
Queue. Remove the item least recently added.
Randomized queue. Remove a random item.

Priority queue. Remove the largest (or smallest) item.

<table>
<thead>
<tr>
<th>operation</th>
<th>argument</th>
<th>return value</th>
</tr>
</thead>
<tbody>
<tr>
<td>insert</td>
<td>P</td>
<td></td>
</tr>
<tr>
<td>insert</td>
<td>Q</td>
<td></td>
</tr>
<tr>
<td>insert</td>
<td>E</td>
<td></td>
</tr>
<tr>
<td>remove max</td>
<td>E</td>
<td>Q</td>
</tr>
<tr>
<td>insert</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>insert</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>insert</td>
<td>M</td>
<td></td>
</tr>
<tr>
<td>remove max</td>
<td>M</td>
<td>X</td>
</tr>
<tr>
<td>insert</td>
<td>P</td>
<td></td>
</tr>
<tr>
<td>insert</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td>insert</td>
<td>E</td>
<td></td>
</tr>
<tr>
<td>remove max</td>
<td>P</td>
<td></td>
</tr>
</tbody>
</table>
Priority queue API

Requirement. Generic items are Comparable.

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>MaxPQ()</code></td>
<td>create an empty priority queue</td>
</tr>
<tr>
<td><code>MaxPQ(Key[] a)</code></td>
<td>create a priority queue with given keys</td>
</tr>
<tr>
<td><code>void insert(Key v)</code></td>
<td>insert a key into the priority queue</td>
</tr>
<tr>
<td><code>Key delMax()</code></td>
<td>return and remove the largest key</td>
</tr>
<tr>
<td><code>boolean isEmpty()</code></td>
<td>is the priority queue empty?</td>
</tr>
<tr>
<td><code>Key max()</code></td>
<td>return the largest key</td>
</tr>
<tr>
<td><code>int size()</code></td>
<td>number of entries in the priority queue</td>
</tr>
</tbody>
</table>

Key must be Comparable (bounded type parameter)
Priority queue applications

- Event-driven simulation. [customers in a line, colliding particles]
- Numerical computation. [reducing roundoff error]
- Data compression. [Huffman codes]
- Graph searching. [Dijkstra's algorithm, Prim's algorithm]
- Number theory. [sum of powers]
- Artificial intelligence. [A* search]
- Statistics. [online median in data stream]
- Operating systems. [load balancing, interrupt handling]
- Computer networks. [web cache]
- Discrete optimization. [bin packing, scheduling]
- Spam filtering. [Bayesian spam filter]

Generalizes: stack, queue, randomized queue.
Priority queue client example

Challenge. Find the largest M items in a stream of N items.
- Fraud detection: isolate $$ transactions.
- NSA monitoring: flag most suspicious documents.

Constraint. Not enough memory to store N items.

```bash
% more tinyBatch.txt
Turing       6/17/1990  644.08
vonNeumann   3/26/2002  4121.85
Dijkstra     8/22/2007  2678.40
vonNeumann   1/11/1999  4409.74
Dijkstra     11/18/1995 837.42
Hoare        5/10/1993  3229.27
vonNeumann   2/12/1994  4732.35
Hoare        8/18/1992  4381.21
Turing       8/11/2002  66.10
Thompson     2/27/2000  4747.08
Turing       2/21/1991  2156.86
Hoare        8/12/2003  1025.70
vonNeumann   10/13/1993 2520.97
Dijkstra     9/10/2000  708.95
Turing       10/12/1993 3532.36
Hoare        2/10/2005  4050.20
```

```bash
% java TopM 5 < tinyBatch.txt
Thompson  2/27/2000  4747.08
vonNeumann 2/12/1994  4732.35
vonNeumann 1/11/1999  4409.74
Hoare     8/18/1992  4381.21
vonNeumann 3/26/2002  4121.85
```

N huge, M large
Priority queue client example

Challenge. Find the largest M items in a stream of N items.
- Fraud detection: isolate $$ transactions.
- NSA monitoring: flag most suspicious documents.

Constraint. Not enough memory to store N items.

```java
MinPQ<Transaction> pq = new MinPQ<Transaction>();
while (StdIn.hasNextLine())
{
    String line = StdIn.readLine();
    Transaction item = new Transaction(line);
    pq.insert(item);
    if (pq.size() > M)
    {
        pq.delMin();
    }
}
```

- Use a min-oriented pq
- Transaction data type is Comparable (ordered by $$)
- pq contains largest M items
Priority queue client example

Challenge. Find the largest M items in a stream of N items.

<table>
<thead>
<tr>
<th>implementation</th>
<th>time</th>
<th>space</th>
</tr>
</thead>
<tbody>
<tr>
<td>sort</td>
<td>$N \log N$</td>
<td>N</td>
</tr>
<tr>
<td>elementary PQ</td>
<td>$M N$</td>
<td>M</td>
</tr>
<tr>
<td>binary heap</td>
<td>$N \log M$</td>
<td>M</td>
</tr>
<tr>
<td>best in theory</td>
<td>N</td>
<td>M</td>
</tr>
</tbody>
</table>

order of growth of finding the largest M in a stream of N items
Priority queue: unordered and ordered array implementation

<table>
<thead>
<tr>
<th>operation</th>
<th>argument</th>
<th>return value</th>
<th>size</th>
<th>contents (unordered)</th>
<th>contents (ordered)</th>
</tr>
</thead>
<tbody>
<tr>
<td>insert</td>
<td>P</td>
<td>1</td>
<td>P</td>
<td>P</td>
<td>P</td>
</tr>
<tr>
<td>insert</td>
<td>Q</td>
<td>2</td>
<td>P Q</td>
<td>P Q</td>
<td>E P Q</td>
</tr>
<tr>
<td>insert</td>
<td>E</td>
<td>3</td>
<td>P Q E</td>
<td>E P Q</td>
<td>E P Q</td>
</tr>
<tr>
<td>remove max</td>
<td>Q</td>
<td>2</td>
<td>P E</td>
<td>E P</td>
<td>E P X</td>
</tr>
<tr>
<td>insert</td>
<td>X</td>
<td>3</td>
<td>P E X</td>
<td>E P X</td>
<td>E P X</td>
</tr>
<tr>
<td>insert</td>
<td>A</td>
<td>4</td>
<td>P E X A</td>
<td>A E P X</td>
<td>A E M P X</td>
</tr>
<tr>
<td>insert</td>
<td>M</td>
<td>5</td>
<td>P E X A M</td>
<td>A E M P X</td>
<td>A E M P X</td>
</tr>
<tr>
<td>remove max</td>
<td>X</td>
<td>4</td>
<td>P E M A</td>
<td>A E M P</td>
<td>A E M P P</td>
</tr>
<tr>
<td>insert</td>
<td>P</td>
<td>5</td>
<td>P E M A P</td>
<td>A E M P P</td>
<td>A E M P P</td>
</tr>
<tr>
<td>insert</td>
<td>L</td>
<td>6</td>
<td>P E M A P L</td>
<td>A E L M P P</td>
<td>A E L M P P</td>
</tr>
<tr>
<td>insert</td>
<td>E</td>
<td>7</td>
<td>P E M A P L E</td>
<td>A E E L M P P</td>
<td>A E E L M P P</td>
</tr>
<tr>
<td>remove max</td>
<td>P</td>
<td>6</td>
<td>E M A P L E</td>
<td>A E E L M P</td>
<td>A E E L M P</td>
</tr>
</tbody>
</table>

A sequence of operations on a priority queue
Priority queue: unordered array implementation

```java
public class UnorderedArrayMaxPQ<Key> extends Comparable<Key> {
    private Key[] pq; // pq[i] = ith element on pq
    private int N; // number of elements on pq

    public UnorderedArrayMaxPQ(int capacity)
    { pq = (Key[]) new Comparable[capacity]; }

    public boolean isEmpty()
    { return N == 0; }

    public void insert(Key x)
    { pq[N++] = x; }

    public Key delMax()
    {
        int max = 0;
        for (int i = 1; i < N; i++)
            if (less(max, i)) max = i;
        exch(max, N-1);
        return pq[--N];
    }
}
```

- `less()` and `exch()` similar to sorting methods (but don't pass `pq[]`)
- `should null out entry to prevent loitering`
- no generic array creation
Priority queue elementary implementations

Challenge. Implement all operations efficiently.

<table>
<thead>
<tr>
<th>implementation</th>
<th>insert</th>
<th>del max</th>
<th>max</th>
</tr>
</thead>
<tbody>
<tr>
<td>unordered array</td>
<td>1</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>ordered array</td>
<td>N</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>goal</td>
<td>log N</td>
<td>log N</td>
<td>log N</td>
</tr>
</tbody>
</table>

order of growth of running time for priority queue with N items
2.4 **Priority Queues**

- API and elementary implementations
- *binary heaps*
- *heapsort*
- *event-driven simulation*
Complete binary tree

Binary tree. Empty or node with links to left and right binary trees.

Complete tree. Perfectly balanced, except for bottom level.

Property. Height of complete tree with \(N \) nodes is \([\lg N]\).

Pf. Height increases only when \(N \) is a power of 2.
A complete binary tree in nature

Hyphaene Compressa - Doum Palm

© Shlomit Pinter
Binary heap representations

Binary heap. Array representation of a heap-ordered complete binary tree.

Heap-ordered binary tree.
- Keys in nodes.
- Parent's key no smaller than children's keys.

Array representation.
- Indices start at 1.
- Take nodes in level order.
- No explicit links needed!
Binary heap properties

Proposition. Largest key is $a[1]$, which is root of binary tree.

Proposition. Can use array indices to move through tree.

- Parent of node at k is at $k/2$.
- Children of node at k are at $2k$ and $2k+1$.

Heap representations
Binary heap demo

Insert. Add node at end, then swim it up.
Remove the maximum. Exchange root with node at end, then sink it down.

heap ordered
Binary heap demo

Insert. Add node at end, then swim it up.
Remove the maximum. Exchange root with node at end, then sink it down.

heap ordered
Promotion in a heap

Scenario. Child's key becomes *larger* key than its parent's key.

To eliminate the violation:
- Exchange key in child with key in parent.
- Repeat until heap order restored.

```java
private void swim(int k) {
    while (k > 1 && less(k/2, k)) {
        exch(k, k/2);
        k = k/2;
    }
}
```

Peter principle. Node promoted to level of incompetence.
Insertion in a heap

Insert. Add node at end, then swim it up.

Cost. At most $1 + \lg N$ compares.

```java
public void insert(Key x) {
    pq[++N] = x;
    swim(N);
}
```
Demotion in a heap

Scenario. Parent's key becomes *smaller* than one (or both) of its children's.

To eliminate the violation:
- Exchange key in parent with key in larger child.
- Repeat until heap order restored.

```java
private void sink(int k) {
    while (2*k <= N) {
        int j = 2*k;
        if (j < N && less(j, j+1)) j++;
        if (!less(k, j)) break;
        exch(k, j);
        k = j;
    }
}
```

Power struggle. Better subordinate promoted.
Delete the maximum in a heap

Delete max. Exchange root with node at end, then sink it down.
Cost. At most $2 \lg N$ compares.

```java
public Key delMax()
{
    Key max = pq[1];
    exch(1, N--);
    sink(1);
    pq[N+1] = null;
    return max;
}
```
public class MaxPQ<Key extends Comparable<Key>>
{
 private Key[] pq;
 private int N;

 public MaxPQ(int capacity)
 { pq = (Key[]) new Comparable[capacity+1]; }

 public boolean isEmpty()
 { return N == 0; }
 public void insert(Key key)
 public Key delMax()
 { /* see previous code */ }

 private void swim(int k)
 private void sink(int k)
 { /* see previous code */ }

 private boolean less(int i, int j)
 { return pq[i].compareTo(pq[j]) < 0; }
 private void exch(int i, int j)
 { Key t = pq[i]; pq[i] = pq[j]; pq[j] = t; }
}
Priority queues implementation cost summary

<table>
<thead>
<tr>
<th>implementation</th>
<th>insert</th>
<th>del max</th>
<th>max</th>
</tr>
</thead>
<tbody>
<tr>
<td>unordered array</td>
<td>1</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>ordered array</td>
<td>N</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>binary heap</td>
<td>$\log N$</td>
<td>$\log N$</td>
<td>1</td>
</tr>
</tbody>
</table>

Order-of-growth of running time for priority queue with N items
Binary heap: practical improvements

Half-exchanges in sink and swim.
- Reduces number of array accesses.
- Worth doing.
Binary heap: practical improvements

Floyd's sink-to-bottom trick.

- Sink key at root all the way to bottom. ➸ 1 compare per node
- Swim key back up. ➸ some extra compares and exchanges
- Fewer compares; more exchanges.
- Worthwhile depending on cost of compare and exchange.

R. W. Floyd
1978 Turing award
Multiway heaps.

- Complete d-way tree.
- Parent's key no smaller than its children's keys.
- Swim takes $\log_d N$ compares; sink takes $d \log_d N$ compares.
- Sweet spot: $d = 4$.

3-way heap
Binary heap: practical improvements

Caching. Binary heap is not cache friendly.
Binary heap: practical improvements

Caching. Binary heap is not cache friendly.

- Cache-aligned d-heap.
- Funnel heap.
- B-heap.
- ...

![Diagram of binary heap and cache blocks](image)

This graph also helps to point out the dangers of an analysis that only counts one type of operation. This graph clearly shows that even if we do not consider caching, a heap with fa...

The children are stored in an unsorted manner, therefore the shorter tree that results from a larger fanout...
Priority queues implementation cost summary

<table>
<thead>
<tr>
<th>implementation</th>
<th>insert</th>
<th>del max</th>
<th>max</th>
</tr>
</thead>
<tbody>
<tr>
<td>unordered array</td>
<td>1</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>ordered array</td>
<td>N</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>binary heap</td>
<td>$\log N$</td>
<td>$\log N$</td>
<td>1</td>
</tr>
<tr>
<td>d–ary heap</td>
<td>$\log_d N$</td>
<td>$d \log_d N$</td>
<td>1</td>
</tr>
<tr>
<td>Fibonacci</td>
<td>1</td>
<td>$\log N$</td>
<td>1</td>
</tr>
<tr>
<td>Brodal queue</td>
<td>1</td>
<td>$\log N$</td>
<td>1</td>
</tr>
<tr>
<td>impossible</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

| † amortized | why impossible? |

order-of-growth of running time for priority queue with N items
Binary heap considerations

Underflow and overflow.
- Underflow: throw exception if deleting from empty PQ.
- Overflow: add no-arg constructor and use resizing array.

Minimum-oriented priority queue.
- Replace less() with greater().
- Implement greater().

Other operations.
- Remove an arbitrary item.
- Change the priority of an item.

Immutability of keys.
- Assumption: client does not change keys while they're on the PQ.
- Best practice: use immutable keys.
Immutability: implementing in Java

Data type. Set of values and operations on those values.

Immutable data type. Can't change the data type value once created.

```java
public final class Vector {
    private final int N;
    private final double[] data;

    public Vector(double[] data) {
        this.N = data.length;
        this.data = new double[N];
        for (int i = 0; i < N; i++)
            this.data[i] = data[i];
    }
}
```

Immutable. String, Integer, Double, Color, Vector, Transaction, Point2D.
Mutable. StringBuilder, Stack, Counter, Java array.
Immutability: properties

Data type. Set of values and operations on those values.

Immutable data type. Can't change the data type value once created.

Advantages.

- Simplifies debugging.
- Safer in presence of hostile code.
- Simplifies concurrent programming.
- Safe to use as key in priority queue or symbol table.

Disadvantage. Must create new object for each data type value.

“Classes should be immutable unless there's a very good reason to make them mutable.... If a class cannot be made immutable, you should still limit its mutability as much as possible.”

— Joshua Bloch (Java architect)
2.4 PRIORITY QUEUES

- API and elementary implementations
- binary heaps
- heapsort
- event-driven simulation
Sorting with a binary heap

Q. What is this sorting algorithm?

```java
public void sort(String[] a) {
    int N = a.length;
    MaxPQ<String> pq = new MaxPQ<String>();
    for (int i = 0; i < N; i++)
        pq.insert(a[i]);
    for (int i = N-1; i >= 0; i--)
        a[i] = pq.delMax();
}
```

Q. What are its properties?
A. $N \log N$, extra array of length N, not stable.

Heapsort intuition. A heap is an array; do sort in place.
Heapsort

Basic plan for in-place sort.

- View input array as a complete binary tree.
- Heap construction: build a max-heap with all \(N \) keys.
- Sortdown: repeatedly remove the maximum key.
Heapsort demo

Heap construction. Build max heap using bottom-up method.

Array in arbitrary order

We assume array entries are indexed 1 to N.
Sortdown. Repeatedly delete the largest remaining item.

array in sorted order
Heapsort: heap construction

First pass. Build heap using bottom-up method.

\[
\text{for (int } k = N/2; k >= 1; k--) \\
\text{sink(a, k, N);}
\]
Heapsort: sortdown

Second pass.
- Remove the maximum, one at a time.
- Leave in array, instead of nulling out.

while (N > 1)
{
 exch(a, 1, N--);
 sink(a, 1, N);
}
Heapsort: Java implementation

```java
public class Heap {
    public static void sort(Comparable[] a) {
        int N = a.length;
        for (int k = N/2; k > 0; k--)
            sink(a, k, N);
        while (N > 1)
        {
            exch(a, 1, N);
            sink(a, 1, --N);
        }
    }

    private static void sink(Comparable[] a, int k, int N) {
        /* as before */
    }

    private static boolean less(Comparable[] a, int i, int j) {
        /* as before */
    }

    private static void exch(Object[] a, int i, int j) {
        /* as before */
    }
}
```

but make static (and pass arguments)

but convert from 1-based indexing to 0-base indexing
Heapsort: trace

<table>
<thead>
<tr>
<th>N</th>
<th>k</th>
<th>a[i]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0 1 2 3 4 5 6 7 8 9 10 11</td>
</tr>
<tr>
<td>11</td>
<td>5</td>
<td>SORT L X AMP E E</td>
</tr>
<tr>
<td>11</td>
<td>4</td>
<td>SORT L X AMP E E</td>
</tr>
<tr>
<td>11</td>
<td>3</td>
<td>SO X T L RAM E E</td>
</tr>
<tr>
<td>11</td>
<td>2</td>
<td>STX P L RAM O E E</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>XTSP LRAM O E E</td>
</tr>
<tr>
<td></td>
<td></td>
<td>heap-ordered</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>TPSO L RAME E EX</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>SPR O L EAMA ETX</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>RPE O L EAMS PX</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>POEM L EA RS TX</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>OMEA L EP RSTX</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>ML EA EO PRSTX</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>LEEA MOPRSTX</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>EALM OPRSTX</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>EALM OPRSTX</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>AEEL MO PRSTX</td>
</tr>
</tbody>
</table>

Heapsort trace (array contents just after each sink)
Heapsort: mathematical analysis

Proposition. Heap construction uses $\leq 2N$ compares and $\leq N$ exchanges.

Pf sketch. [assume $N = 2^{h+1} - 1$]

A binary heap of height $h = 3$

$$h + 2(h - 1) + 4(h - 2) + 8(h - 3) + \ldots + 2^h(0) \leq 2^{h+1}$$

$$= N$$

A tricky sum (see COS 340)
Heapsort: mathematical analysis

Proposition. Heap construction uses $\leq 2N$ compares and $\leq N$ exchanges.

Proposition. Heapsort uses $\leq 2N \lg N$ compares and exchanges.

algorithm can be improved to $\sim 1N \lg N$

Significance. In-place sorting algorithm with $N \log N$ worst-case.

- Mergesort: no, linear extra space.
 in-place merge possible, not practical
- Quicksort: no, quadratic time in worst case.
 $N \log N$ worst-case quicksort possible, not practical
- Heapsort: yes!

Bottom line. Heapsort is optimal for both time and space, **but:**

- Inner loop longer than quicksort’s.
- Makes poor use of cache.
- Not stable.

advanced tricks for improving
Introsort

Goal. As fast as quicksort in practice; \(N \log N \) worst case, in place.

Introsort.

- Run quicksort.
- Cutoff to heapsort if stack depth exceeds \(2 \lg N \).
- Cutoff to insertion sort for \(N = 16 \).

In the wild. C++ STL, Microsoft .NET Framework.
Sorting algorithms: summary

<table>
<thead>
<tr>
<th></th>
<th>inplace?</th>
<th>stable?</th>
<th>best</th>
<th>average</th>
<th>worst</th>
<th>remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>selection</td>
<td>✔</td>
<td></td>
<td>$\frac{1}{2} N^2$</td>
<td>$\frac{1}{2} N^2$</td>
<td>$\frac{1}{2} N^2$</td>
<td>N exchanges</td>
</tr>
<tr>
<td>insertion</td>
<td>✔</td>
<td>✔</td>
<td>N</td>
<td>$\frac{1}{4} N^2$</td>
<td>$\frac{1}{2} N^2$</td>
<td>use for small N or partially ordered</td>
</tr>
<tr>
<td>shell</td>
<td>✔</td>
<td></td>
<td>$N \log_3 N$</td>
<td>?</td>
<td>$c N^{3/2}$</td>
<td>tight code; subquadratic</td>
</tr>
<tr>
<td>merge</td>
<td>✔</td>
<td>✔</td>
<td>$\frac{1}{2} N \log N$</td>
<td>$N \log N$</td>
<td>$N \log N$</td>
<td>$N \log N$ guarantee; stable</td>
</tr>
<tr>
<td>timsort</td>
<td>✔</td>
<td></td>
<td>N</td>
<td>$N \log N$</td>
<td>$N \log N$</td>
<td>improves mergesort when preexisting order</td>
</tr>
<tr>
<td>quick</td>
<td>✔</td>
<td></td>
<td>$N \log N$</td>
<td>$2 N \ln N$</td>
<td>$\frac{1}{2} N^2$</td>
<td>$N \log N$ probabilistic guarantee; fastest in practice</td>
</tr>
<tr>
<td>3-way quick</td>
<td>✔</td>
<td></td>
<td>N</td>
<td>$2 N \ln N$</td>
<td>$\frac{1}{2} N^2$</td>
<td>improves quicksort when duplicate keys</td>
</tr>
<tr>
<td>heap</td>
<td>✔</td>
<td></td>
<td>N</td>
<td>$2 N \log N$</td>
<td>$2 N \log N$</td>
<td>$N \log N$ guarantee; in-place</td>
</tr>
<tr>
<td>?</td>
<td>✔</td>
<td>✔</td>
<td>N</td>
<td>$N \log N$</td>
<td>$N \log N$</td>
<td>holy sorting grail</td>
</tr>
</tbody>
</table>
2.4 Priority Queues

- API and elementary implementations
- Binary heaps
- Heapsort
- Event-driven simulation
Molecular dynamics simulation of hard discs

Goal. Simulate the motion of N moving particles that behave according to the laws of elastic collision.
Molecular dynamics simulation of hard discs

Goal. Simulate the motion of N moving particles that behave according to the laws of elastic collision.

Hard disc model.
- Moving particles interact via elastic collisions with each other and walls.
- Each particle is a disc with known position, velocity, mass, and radius.
- No other forces.

Significance. Relates macroscopic observables to microscopic dynamics.
- Einstein: explain Brownian motion of pollen grains.
Warmup: bouncing balls

Time-driven simulation. \(N \) bouncing balls in the unit square.

```java
public class BouncingBalls {
    public static void main(String[] args) {
        int N = Integer.parseInt(args[0]);
        Ball[] balls = new Ball[N];
        for (int i = 0; i < N; i++)
            balls[i] = new Ball();
        while(true)
        {
            StdDraw.clear();
            for (int i = 0; i < N; i++)
                { balls[i].move(0.5);
                balls[i].draw();
            }
            StdDraw.show(50);
        }
    }
}
```

% java BouncingBalls 100
Warmup: bouncing balls

```java
public class Ball {
    private double rx, ry;       // position
    private double vx, vy;       // velocity
    private final double radius; // radius
    public Ball(...) {
        /* initialize position and velocity */
    }

    public void move(double dt) {
        if ((rx + vx*dt < radius) || (rx + vx*dt > 1.0 - radius)) { vx = -vx; }
        if ((ry + vy*dt < radius) || (ry + vy*dt > 1.0 - radius)) { vy = -vy; }
        rx = rx + vx*dt;
        ry = ry + vy*dt;
    }

    public void draw() {
        StdDraw.filledCircle(rx, ry, radius);
    }
}
```

Missing. Check for balls colliding with each other.

- Physics problems: when? what effect?
- CS problems: which object does the check? too many checks?
Time-driven simulation

- Discretize time in quanta of size dt.
- Update the position of each particle after every dt units of time, and check for overlaps.
- If overlap, roll back the clock to the time of the collision, update the velocities of the colliding particles, and continue the simulation.
Main drawbacks.

- \(\sim N^2/2 \) overlap checks per time quantum.
- Simulation is too slow if \(dt \) is very small.
- May miss collisions if \(dt \) is too large.
 (if colliding particles fail to overlap when we are looking)

Time-driven simulation

dt too small: excessive computation

dt too large: may miss collisions
Event-driven simulation

Change state only when something happens.

- Between collisions, particles move in straight-line trajectories.
- Focus only on times when collisions occur.
- Maintain \(PQ \) of collision events, prioritized by time.
- Remove the min = get next collision.

Collision prediction. Given position, velocity, and radius of a particle, when will it collide next with a wall or another particle?

Collision resolution. If collision occurs, update colliding particle(s) according to laws of elastic collisions.
Collision prediction and resolution.

- Particle of radius s at position (r_x, r_y).
- Particle moving in unit box with velocity (v_x, v_y).
- Will it collide with a vertical wall? If so, when?

Predicting and resolving a particle-wall collision:

Prediction (at time t)

\[dt = \text{time to hit wall} = \frac{\text{distance/velocity}}{= (1 - s - r_x)/v_x} \]

Resolution (at time $t + dt$)

\[
\begin{align*}
\text{velocity after collision} &= (-v_x, v_y) \\
\text{position after collision} &= (1 - s, r_y + v_y dt)
\end{align*}
\]
Particle-particle collision prediction

Collision prediction.

- Particle i: radius s_i, position (rx_i, ry_i), velocity (vx_i, vy_i).
- Particle j: radius s_j, position (rx_j, ry_j), velocity (vx_j, vy_j).
- Will particles i and j collide? If so, when?
Particle-particle collision prediction

Collision prediction.

- Particle i: radius s_i, position (rx_i, ry_i), velocity (vx_i, vy_i).
- Particle j: radius s_j, position (rx_j, ry_j), velocity (vx_j, vy_j).
- Will particles i and j collide? If so, when?

\[
\Delta t = \begin{cases}
\infty & \text{if } \Delta v \cdot \Delta r \geq 0 \\
\infty & \text{if } d < 0 \\
- \frac{\Delta v \cdot \Delta r + \sqrt{d}}{\Delta v \cdot \Delta v} & \text{otherwise}
\end{cases}
\]

\[
d = (\Delta v \cdot \Delta r)^2 - (\Delta v \cdot \Delta v) (\Delta r \cdot \Delta r - \sigma^2) \quad \sigma = \sigma_i + \sigma_j
\]

\[
\Delta v = (\Delta vx, \Delta vy) = (vx_i - vx_j, vy_i - vy_j) \quad \Delta v \cdot \Delta v = (\Delta vx)^2 + (\Delta vy)^2
\]

\[
\Delta r = (\Delta rx, \Delta ry) = (rx_i - rx_j, ry_i - ry_j) \quad \Delta r \cdot \Delta r = (\Delta rx)^2 + (\Delta ry)^2
\]

\[
\Delta v \cdot \Delta r = (\Delta vx)(\Delta rx) + (\Delta vy)(\Delta ry)
\]

Important note: This is physics, so we won’t be testing you on it!
Particle-particle collision resolution

Collision resolution. When two particles collide, how does velocity change?

\[
\begin{align*}
 v_{x_i}' &= v_{x_i} + \frac{Jx}{m_i} \\
 v_{y_i}' &= v_{y_i} + \frac{Jy}{m_i} \\
 v_{x_j}' &= v_{x_j} - \frac{Jx}{m_j} \\
 v_{y_j}' &= v_{y_j} - \frac{Jy}{m_j}
\end{align*}
\]

Newton's second law (momentum form)

\[
Jx = \frac{J \Delta r_x}{\sigma}, \quad Jy = \frac{J \Delta r_y}{\sigma}, \quad J = \frac{2m_i m_j (\Delta v \cdot \Delta r)}{\sigma (m_i + m_j)}
\]

Impulse due to normal force
(conervation of energy, conservation of momentum)

Important note: This is physics, so we won’t be testing you on it!
public class Particle
{
 private double rx, ry; // position
 private double vx, vy; // velocity
 private final double radius; // radius
 private final double mass; // mass
 private int count; // number of collisions

 public Particle(...) { }

 public void move(double dt) { }
 public void draw() { }

 public double timeToHit(Particle that) { }
 public double timeToHitVerticalWall() { }
 public double timeToHitHorizontalWall() { }

 public void bounceOff(Particle that) { }
 public void bounceOffVerticalWall() { }
 public void bounceOffHorizontalWall() { }
}
Particle-particle collision and resolution implementation

```java
public double timeToHit(Particle that) {
    if (this == that) return INFINITY;
    double dx = that.rx - this.rx, dy = that.ry - this.ry;
    double dvx = that.vx - this.vx; dvy = that.vy - this.vy;
    double dvdr = dx*dvx + dy*dvy;
    if( dvdr > 0) return INFINITY;
    double dvdv = dvx*dvx + dvy*dvy;
    double drdr = dx*dx + dy*dy;
    double sigma = this.radius + that.radius;
    double d = (dvdr*dvdr) - dvdv * (drdr - sigma*sigma);
    if (d < 0) return INFINITY;
    return -(dvdr + Math.sqrt(d)) / dvdv;
}

public void bounceOff(Particle that) {
    double dx = that.rx - this.rx, dy = that.ry - this.ry;
    double dvx = that.vx - this.vx, dvy = that.vy - this.vy;
    double dvdr = dx*dvx + dy*dvy;
    double dist = this.radius + that.radius;
    double J = 2 * this.mass * that.mass * dvdr / ((this.mass + that.mass) * dist);
    double Jx = J * dx / dist;
    double Jy = J * dy / dist;
    this.vx += Jx / this.mass;
    this.vy += Jy / this.mass;
    that.vx -= Jx / that.mass;
    that.vy -= Jy / that.mass;
    this.count++;
    that.count++;
    // Important note: This is physics, so we won't be testing you on it!
```
Collision system: event-driven simulation main loop

Initialization.

- Fill PQ with all potential particle-wall collisions.
- Fill PQ with all potential particle-particle collisions.

Main loop.

- Delete the impending event from PQ (min priority = t).
- If the event has been invalidated, ignore it.
- Advance all particles to time \(t \), on a straight-line trajectory.
- Update the velocities of the colliding particle(s).
- Predict future particle-wall and particle-particle collisions involving the colliding particle(s) and insert events onto PQ.
Event data type

Conventions.

- Neither particle null ⇒ particle-particle collision.
- One particle null ⇒ particle-wall collision.
- Both particles null ⇒ redraw event.

```java
private class Event implements Comparable<Event> {
    private double time; // time of event
    private Particle a, b; // particles involved in event
    private int countA, countB; // collision counts for a and b

    public Event(double t, Particle a, Particle b) {} // create event

    public int compareTo(Event that) {
        return this.time - that.time; // ordered by time
    }

    public boolean isValid() {
        // invalid if intervening collision
        } // isValid
}
```
public class CollisionSystem
{
 private MinPQ<Event> pq; // the priority queue
 private double t = 0.0; // simulation clock time
 private Particle[] particles; // the array of particles

 public CollisionSystem(Particle[] particles) { }

 private void predict(Particle a) {
 if (a == null) return;
 for (int i = 0; i < N; i++)
 double dt = a.timeToHit(particles[i]);
 pq.insert(new Event(t + dt, a, particles[i]));
 pq.insert(new Event(t + a.timeToHitVerticalWall() , a, null));
 pq.insert(new Event(t + a.timeToHitHorizontalWall(), null, a));
 }

 private void redraw() { }

 public void simulate() { /* see next slide */ }
}
Collision system implementation: main event-driven simulation loop

```java
public void simulate()
{
    pq = new MinPQ<Event>();
    for(int i = 0; i < N; i++) predict(particles[i]);
    pq.insert(new Event(0, null, null));

    while(!pq.isEmpty())
    {
        Event event = pq.delMin();
        if(!event.isValid()) continue;
        Particle a = event.a;
        Particle b = event.b;

        for(int i = 0; i < N; i++)
            particles[i].move(event.time - t);
        t = event.time;

        if    (a != null && b != null) a.bounceOff(b);
        else if (a != null && b == null) a.bounceOffVerticalWall();
        else if (a == null && b != null) b.bounceOffHorizontalWall();
        else if (a == null && b == null) redraw();

        predict(a);
        predict(b);
    }
}
```

initialize PQ with collision events and redraw event
get next event
update positions and time
process event
predict new events based on changes
Particle collision simulation example 1

% java CollisionSystem 100
Particle collision simulation example 2

% java CollisionSystem < billiards.txt
Particle collision simulation example 3

% java CollisionSystem < brownian.txt
Particle collision simulation example 4

% java CollisionSystem < diffusion.txt