1.5 Union-Find

- dynamic connectivity
- quick find
- quick union
- improvements
- applications
Subtext of today’s lecture (and this course)

Steps to developing a usable algorithm.

- Model the problem.
- Find an algorithm to solve it.
- Fast enough? Fits in memory?
- If not, figure out why not.
- Find a way to address the problem.
- Iterate until satisfied.

The scientific method.

Mathematical analysis.
1.5 Union-Find

- dynamic connectivity
- quick find
- quick union
- improvements
- applications
Dynamic connectivity problem

Given a set of N objects, support two operation:

- Connect two objects.
- Is there a path connecting the two objects?

connect 4 and 3
connect 3 and 8
connect 6 and 5
connect 9 and 4
connect 2 and 1
are 0 and 7 connected? ✗
are 8 and 9 connected? ✓
connect 5 and 0
connect 7 and 2
connect 6 and 1
connect 1 and 0
are 0 and 7 connected? ✓
A larger connectivity example

Q. Is there a path connecting p and q?

A. Yes.
Applications involve manipulating objects of all types.

- Pixels in a digital photo.
- Computers in a network.
- Friends in a social network.
- Transistors in a computer chip.
- Elements in a mathematical set.
- Variable names in a Fortran program.
- Metallic sites in a composite system.

When programming, convenient to name objects 0 to $N - 1$.

- Use integers as array index.
- Suppress details not relevant to union-find.

can use symbol table to translate from site names to integers: stay tuned (Chapter 3)
Modeling the connections

We assume "is connected to" is an equivalence relation:
- Reflexive: \(p \) is connected to \(p \).
- Symmetric: if \(p \) is connected to \(q \), then \(q \) is connected to \(p \).
- Transitive: if \(p \) is connected to \(q \) and \(q \) is connected to \(r \), then \(p \) is connected to \(r \).

Connected component. Maximal set of objects that are mutually connected.

\[
\begin{array}{ccc}
\{0\} & \{1, 4, 5\} & \{2, 3, 6, 7\} \\
\end{array}
\]

3 connected components
Implementing the operations

Find. In which component is object \(p \)?

Connected. Are objects \(p \) and \(q \) in the same component?

Union. Replace components containing objects \(p \) and \(q \) with their union.

\[
\begin{align*}
\{ 0 \} & \quad \{ 1 4 5 \} \quad \{ 2 3 6 7 \} \\
3 \text{ connected components} & \quad \rightarrow \\
\{ 0 \} & \quad \{ 1 2 3 4 5 6 7 \} \\
2 \text{ connected components}
\end{align*}
\]
Union-find data type (API)

Goal. Design efficient data structure for union-find.
- Number of objects N can be huge.
- Number of operations M can be huge.
- Union and find operations may be intermixed.

```java
public class UF {
    public UF(int N) { /* initialize union-find data structure with N singleton objects (0 to N – 1) */ }
    void union(int p, int q) { /* add connection between p and q */ }
    int find(int p) { /* component identifier for p (0 to N – 1) */ }
    boolean connected(int p, int q) { /* are p and q in the same component? */ }
}

public boolean connected(int p, int q) {
    return find(p) == find(q);
}
```

1-line implementation of connected()
Dynamic-connectivity client

- Read in number of objects N from standard input.
- Repeat:
 - read in pair of integers from standard input
 - if they are not yet connected, connect them and print out pair

```java
public static void main(String[] args) {
    int N = StdIn.readInt();
    UF uf = new UF(N);
    while (!StdIn.isEmpty()) {
        int p = StdIn.readInt();
        int q = StdIn.readInt();
        if (!uf.connected(p, q)) {
            uf.union(p, q);
            StdOut.println(p + " " + q);
        }
    }
}
```

% more tinyUF.txt
10
4 3
3 8
6 5
9 4
2 1
8 9
5 0
7 2
6 1
1 0
6 7
already connected
1.5 Union-Find

- dynamic connectivity
- quick find
- quick union
- improvements
- applications
Quick-find [eager approach]

Data structure.

- Integer array \(id[] \) of length \(N \).
- Interpretation: \(id[p] \) is the id of the component containing \(p \).

```
0 1 1 8 8 0 0 1 8 8
```

0, 5 and 6 are connected
1, 2, and 7 are connected
3, 4, 8, and 9 are connected
Quick-find [eager approach]

Data structure.
- Integer array \(id[] \) of length \(N \).
- Interpretation: \(id[p] \) is the id of the component containing \(p \).

Find. What is the id of \(p \)?
Connected. Do \(p \) and \(q \) have the same id?

Union. To merge components containing \(p \) and \(q \), change all entries whose id equals \(id[p] \) to \(id[q] \).
Quick-find demo
Quick-find demo

id[] 0 1 2 3 4 5 6 7 8 9
 1 1 1 8 8 1 1 1 8 8
public class QuickFindUF
{
 private int[] id;

 public QuickFindUF(int N)
 {
 id = new int[N];
 for (int i = 0; i < N; i++)
 id[i] = i;
 }

 public int find(int p)
 {
 return id[p];
 }

 public void union(int p, int q)
 {
 int pid = id[p];
 int qid = id[q];
 for (int i = 0; i < id.length; i++)
 if (id[i] == pid) id[i] = qid;
 }
}
Quick-find is too slow

Cost model. Number of array accesses (for read or write).

<table>
<thead>
<tr>
<th>algorithm</th>
<th>initialize</th>
<th>union</th>
<th>find</th>
<th>connected</th>
</tr>
</thead>
<tbody>
<tr>
<td>quick-find</td>
<td>N</td>
<td>N</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Order of growth of number of array accesses

Union is too expensive. It takes N^2 array accesses to process a sequence of N union operations on N objects.
Quadratic algorithms do not scale

Rough standard (for now).
 • 10^9 operations per second.
 • 10^9 words of main memory.
 • Touch all words in approximately 1 second.

Ex. Huge problem for quick-find.
 • 10^9 union commands on 10^9 objects.
 • Quick-find takes more than 10^{18} operations.
 • 30+ years of computer time!

Quadratic algorithms don't scale with technology.
 • New computer may be 10x as fast.
 • But, has 10x as much memory ⇒ want to solve a problem that is 10x as big.
 • With quadratic algorithm, takes 10x as long!
1.5 Union-Find

- dynamic connectivity
- quick find
- quick union
- improvements
- applications
Quick-union [lazy approach]

Data structure.

- Integer array id[] of length N.
- Interpretation: \(\text{id}[i] \) is parent of \(i \).
- Root of \(i \) is \(\text{id}[\text{id}[\ldots\text{id}[i]\ldots]] \).

```
<table>
<thead>
<tr>
<th>i</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>id</td>
<td>0</td>
<td>1</td>
<td>9</td>
<td>4</td>
<td>9</td>
<td>6</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
</tr>
</tbody>
</table>
```

keep going until it doesn't change
(algorithm ensures no cycles)

parent of 3 is 4
root of 3 is 9
Quick-union [lazy approach]

Data structure.
- Integer array `id[]` of length `N`.
- Interpretation: `id[i]` is parent of `i`.
- Root of `i` is `id[id[id[...id[i]...]]]`.

```
0 1 2 3 4 5 6 7 8 9
id[] 0 1 9 4 9 6 6 7 8 9
```

Find. What is the root of `p`?
Connected. Do `p` and `q` have the same root?

Union. To merge components containing `p` and `q`, set the id of `p`'s root to the id of `q`'s root.

```
0 1 2 3 4 5 6 7 8 9
id[] 0 1 9 4 9 6 6 7 8 6
```

root of 3 is 9
root of 5 is 6
3 and 5 are not connected
Quick-union demo
Quick-union demo
Quick-union: Java implementation

```java
public class QuickUnionUF {
    private int[] id;

    public QuickUnionUF(int N) {
        id = new int[N];
        for (int i = 0; i < N; i++) id[i] = i;
    }

    public int find(int i) {
        while (i != id[i]) i = id[i];
        return i;
    }

    public void union(int p, int q) {
        int i = find(p);
        int j = find(q);
        id[i] = j;
    }
}
```

- Set id of each object to itself (N array accesses)
- Chase parent pointers until reach root (depth of i array accesses)
- Change root of p to point to root of q (depth of p and q array accesses)
Quick-union is also too slow

Cost model. Number of array accesses (for read or write).

<table>
<thead>
<tr>
<th>algorithm</th>
<th>initialize</th>
<th>union</th>
<th>find</th>
<th>connected</th>
</tr>
</thead>
<tbody>
<tr>
<td>quick-find</td>
<td>N</td>
<td>N</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>quick-union</td>
<td>N</td>
<td>N †</td>
<td>N</td>
<td>N</td>
</tr>
</tbody>
</table>

† includes cost of finding roots

Quick-find defect.
- Union too expensive (N array accesses).
- Trees are flat, but too expensive to keep them flat.

Quick-union defect.
- Trees can get tall.
- Find/connected too expensive (could be N array accesses).
1.5 Union-Find

- dynamic connectivity
- quick find
- quick union
- improvements
- applications
Improvement 1: weighting

Weighted quick-union.

- Modify quick-union to avoid tall trees.
- Keep track of size of each tree (number of objects).
- Balance by linking root of smaller tree to root of larger tree.
Weighted quick-union demo

id[]

0 1 2 3 4 5 6 7 8 9
Weighted quick-union demo
Quick-union and weighted quick-union example

Quick-union and weighted quick-union (100 sites, 88 union() operations)

average distance to root: 5.11

average distance to root: 1.52
Weighted quick-union: Java implementation

Data structure. Same as quick-union, but maintain extra array \(sz[i] \) to count number of objects in the tree rooted at \(i \).

Find/connected. Identical to quick-union.

Union. Modify quick-union to:
- Link root of smaller tree to root of larger tree.
- Update the \(sz[] \) array.

```java
int i = find(p);
int j = find(q);
if (i == j) return;
if (sz[i] < sz[j]) {
    id[i] = j;
    sz[j] += sz[i];
} else {
    id[j] = i;
    sz[i] += sz[j];
}
```
Weighted quick-union analysis

Running time.
- Find: takes time proportional to depth of p.
- Union: takes constant time, given roots.

Proposition. Depth of any node x is at most $\lg N$.

$$N = 10$$
$$\text{depth}(x) = 3 \leq \lg N$$
Weighted quick-union analysis

Running time.
- Find: takes time proportional to depth of p.
- Union: takes constant time, given roots.

Proposition. Depth of any node x is at most $\lg N$.

Pf. What causes the depth of object x to increase?
Increases by 1 when tree T_1 containing x is merged into another tree T_2.
 - The size of the tree containing x at least doubles since $|T_2| \geq |T_1|$.
 - Size of tree containing x can double at most $\lg N$ times. Why?

\[
\begin{array}{c}
T_2 \\
\vdots \\
1 \\
2 \\
4 \\
8 \\
16 \\
N \\
\end{array}
\quad \{ \lg N \}
\]
Weighted quick-union analysis

Running time.
- Find: takes time proportional to depth of p.
- Union: takes constant time, given roots.

Proposition. Depth of any node x is at most $\lg N$.

<table>
<thead>
<tr>
<th>algorithm</th>
<th>initialize</th>
<th>union</th>
<th>find</th>
<th>connected</th>
</tr>
</thead>
<tbody>
<tr>
<td>quick-find</td>
<td>N</td>
<td>N</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>quick-union</td>
<td>N</td>
<td>N^\dagger</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>weighted QU</td>
<td>N</td>
<td>$\lg N^\dagger$</td>
<td>$\lg N$</td>
<td>$\lg N$</td>
</tr>
</tbody>
</table>

† includes cost of finding roots

Q. Stop at guaranteed acceptable performance?
A. No, easy to improve further.
Improvement 2: path compression

Quick union with path compression. Just after computing the root of \(p \), set the \(\text{id}[] \) of each examined node to point to that root.
Improvement 2: path compression

Quick union with path compression. Just after computing the root of p, set the $i \text{d}[]$ of each examined node to point to that root.
Improvement 2: path compression

Quick union with path compression. Just after computing the root of \(p \), set the \(\text{id}[\cdot] \) of each examined node to point to that root.
Improvement 2: path compression

Quick union with path compression. Just after computing the root of \(p \), set the \(\text{id}[] \) of each examined node to point to that root.
Quick union with path compression. Just after computing the root of p, set the $id[]$ of each examined node to point to that root.

Bottom line. Now, find() has the side effect of compressing the tree.
Path compression: Java implementation

Two-pass implementation: add second loop to `find()` to set the `id[]` of each examined node to the root.

Simpler one-pass variant (path halving): Make every other node in path point to its grandparent.

```java
public int find(int i) {
    while (i != id[i]) {
        id[i] = id[id[i]];
        i = id[i];
    }
    return i;
}
```

In practice. No reason not to! Keeps tree almost completely flat.
Weighted quick-union with path compression: amortized analysis

Proposition. [Hopcroft-Ulman, Tarjan] Starting from an empty data structure, any sequence of M union–find ops on N objects makes $\le c (N + M \lg^* N)$ array accesses.

- Analysis can be improved to $N + M \alpha(M, N)$.
- Simple algorithm with fascinating mathematics.

<table>
<thead>
<tr>
<th>N</th>
<th>$\lg^* N$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>16</td>
<td>3</td>
</tr>
<tr>
<td>65536</td>
<td>4</td>
</tr>
<tr>
<td>2^{65536}</td>
<td>5</td>
</tr>
</tbody>
</table>

Linear-time algorithm for M union-find ops on N objects?
- Cost within constant factor of reading in the data.
- In theory, WQUPC is not quite linear.
- In practice, WQUPC is linear.

Amazing fact. [Fredman-Saks] No linear-time algorithm exists.

in "cell-probe" model of computation
Key point. Weighted quick union (and/or path compression) makes it possible to solve problems that could not otherwise be addressed.

<table>
<thead>
<tr>
<th>algorithm</th>
<th>worst-case time</th>
</tr>
</thead>
<tbody>
<tr>
<td>quick–find</td>
<td>M N</td>
</tr>
<tr>
<td>quick–union</td>
<td>M N</td>
</tr>
<tr>
<td>weighted QU</td>
<td>N + M log N</td>
</tr>
<tr>
<td>QU + path compression</td>
<td>N + M log N</td>
</tr>
<tr>
<td>weighted QU + path compression</td>
<td>N + M lg^* N</td>
</tr>
</tbody>
</table>

order of growth for M union–find operations on a set of N objects

Ex. [10^9 unions and finds with 10^9 objects]

- WQUPC reduces time from 30 years to 6 seconds.
- Supercomputer won't help much; good algorithm enables solution.
1.5 Union-Find

- dynamic connectivity
- quick find
- quick union
- improvements
- applications
Union-find applications

- Percolation.
- Games (Go, Hex).
- Dynamic connectivity.
 - Least common ancestor.
 - Equivalence of finite state automata.
 - Hoshen-Kopelman algorithm in physics.
 - Hinley-Milner polymorphic type inference.
 - Kruskal's minimum spanning tree algorithm.
 - Compiling equivalence statements in Fortran.
 - Morphological attribute openings and closings.
 - Matlab's `bwlabel()` function in image processing.
An abstract model for many physical systems:

- N-by-N grid of sites.
- Each site is open with probability p (and blocked with probability $1 - p$).
- System percolates iff top and bottom are connected by open sites.

Percolation

$$N = 8$$
Percolation

An abstract model for many physical systems:

- \(N \)-by-\(N \) grid of sites.
- Each site is open with probability \(p \) (and blocked with probability \(1 - p \)).
- System percolates iff top and bottom are connected by open sites.

<table>
<thead>
<tr>
<th>model</th>
<th>system</th>
<th>vacant site</th>
<th>occupied site</th>
<th>percolates</th>
</tr>
</thead>
<tbody>
<tr>
<td>electricity</td>
<td>material</td>
<td>conductor</td>
<td>insulated</td>
<td>conducts</td>
</tr>
<tr>
<td>fluid flow</td>
<td>material</td>
<td>empty</td>
<td>blocked</td>
<td>porous</td>
</tr>
<tr>
<td>social interaction</td>
<td>population</td>
<td>person</td>
<td>empty</td>
<td>communicates</td>
</tr>
</tbody>
</table>
Likelihood of percolation

Depends on grid size N and site vacancy probability p.

- p low (0.4) does not percolate
- p medium (0.6) percolates?
- p high (0.8) percolates
Percolation phase transition

When N is large, theory guarantees a sharp threshold p^*.

- $p > p^*$: almost certainly percolates.
- $p < p^*$: almost certainly does not percolate.

Q. What is the value of p^*?
Monte Carlo simulation

- Initialize all sites in an N-by-N grid to be blocked.
- Declare random sites open until top connected to bottom.
- Vacancy percentage estimates p^*.

$N = 20$

135 open sites
Q. How to check whether an N-by-N system percolates?
A. Model as a dynamic connectivity problem and use union-find.
Q. How to check whether an N-by-N system percolates?
 • Create an object for each site and name them 0 to $N^2 - 1$.

Dynamic connectivity solution to estimate percolation threshold
Dynamic connectivity solution to estimate percolation threshold

Q. How to check whether an N-by-N system percolates?
 • Create an object for each site and name them 0 to $N^2 - 1$.
 • Sites are in same component iff connected by open sites.
Q. How to check whether an N-by-N system percolates?
 • Create an object for each site and name them 0 to $N^2 - 1$.
 • Sites are in same component iff connected by open sites.
 • Percolates iff any site on bottom row is connected to any site on top row.

brute-force algorithm: N^2 calls to connected()
Clever trick. Introduce 2 virtual sites (and connections to top and bottom).
- Percolates iff virtual top site is connected to virtual bottom site.

![Diagram](image_url)

N = 5 open site
N = 5 blocked site

Virtual top site
Virtual bottom site
Top row
Bottom row

More efficient algorithm: only 1 call to connected()
Dynamic connectivity solution to estimate percolation threshold

Q. How to model opening a new site?
Q. How to model opening a new site?
A. Mark new site as open; connect it to all of its adjacent open sites.
Percolation threshold

Q. What is percolation threshold p^*?

A. About 0.592746 for large square lattices.

Fast algorithm enables accurate answer to scientific question.
Steps to developing a usable algorithm.

- Model the problem.
- Find an algorithm to solve it.
- Fast enough? Fits in memory?
- If not, figure out why.
- Find a way to address the problem.
- Iterate until satisfied.

The scientific method.

Mathematical analysis.