Below is the syntax highlighted version of FenwickTree.java
from §9.9 Miscellaneous.
/****************************************************************************** * Compilation: javac FenwickTree.java * Execution: java FenwickTree * * A Fenwick tree. * ******************************************************************************/ import java.util.ArrayList; import java.util.Arrays; /** * Created by ricardodpsx@gmail.com on 4/01/15. * <p> * In {@code Fenwick Tree} structure We arrange the array in an smart way to perform efficient <em>range queries and updates</em>. * The key point is this: In a fenwick array, each position "responsible" for storing cumulative data of N previous positions (N could be 1) * For example: * array[40] stores: array[40] + array[39] ... + array[32] (8 positions) * array[32] stores: array[32] + array[31] ... + array[1] (32 positions) * <p> * <strong>But, how do you know how much positions a given index is "responsible" for?</strong> * <p> * To know the number of items that a given array position 'ind' is responsible for * We should extract from 'ind' the portion up to the first significant one of the binary representation of 'ind' * for example, given ind == 40 (101000 in binary), according to Fenwick algorithm * what We want is to extract 1000(8 in decimal). * <p> * This means that array[40] has cumulative information of 8 array items. * But We still need to know the cumulative data bellow array[40 - 8 = 32] * 32 is 100000 in binnary, and the portion up to the least significant one is 32 itself! * So array[32] has information of 32 items, and We are done! * <p> * So cummulative data of array[1...40] = array[40] + array[32] * Because 40 has information of items from 40 to 32, and 32 has information of items from 32 to 1 * <p> * Memory usage: O(n) * * @author Ricardo Pacheco */ public class FenwickTree { int[] array; // 1-indexed array, In this array We save cumulative information to perform efficient range queries and updates public FenwickTree(int size) { array = new int[size + 1]; } /** * Range Sum query from 1 to ind * ind is 1-indexed * <p> * Time-Complexity: O(log(n)) * * @param ind index * @return sum */ public int rsq(int ind) { assert ind > 0; int sum = 0; while (ind > 0) { sum += array[ind]; //Extracting the portion up to the first significant one of the binary representation of 'ind' and decrementing ind by that number ind -= ind & (-ind); } return sum; } /** * Range Sum Query from a to b. * Search for the sum from array index from a to b * a and b are 1-indexed * <p> * Time-Complexity: O(log(n)) * * @param a left index * @param b right index * @return sum */ public int rsq(int a, int b) { assert b >= a && a > 0 && b > 0; return rsq(b) - rsq(a - 1); } /** * Update the array at ind and all the affected regions above ind. * ind is 1-indexed * <p> * Time-Complexity: O(log(n)) * * @param ind index * @param value value */ public void update(int ind, int value) { assert ind > 0; while (ind < array.length) { array[ind] += value; //Extracting the portion up to the first significant one of the binary representation of 'ind' and incrementing ind by that number ind += ind & (-ind); } } public int size() { return array.length - 1; } /** * Read the following commands: * init n Initializes the array of size n all zeroes * set a b c Initializes the array with [a, b, c ...] * rsq a b Range Sum Query for the range [a,b] * up i v Update the i position of the array with value v. * exit * <p> * The array is 1-indexed * Example: * set 1 2 3 4 5 6 * rsq 1 3 * Sum from 1 to 3 = 6 * rmq 1 3 * Min from 1 to 3 = 1 * input up 1 3 * [3,2,3,4,5,6] * * @param args the command-line arguments */ public static void main(String[] args) { FenwickTree ft = null; String cmd = "cmp"; while (true) { String[] line = StdIn.readLine().split(" "); if (line[0].equals("exit")) break; int arg1 = 0, arg2 = 0; if (line.length > 1) { arg1 = Integer.parseInt(line[1]); } if (line.length > 2) { arg2 = Integer.parseInt(line[2]); } if ((!line[0].equals("set") && !line[0].equals("init")) && ft == null) { StdOut.println("FenwickTree not initialized"); continue; } if (line[0].equals("init")) { ft = new FenwickTree(arg1); for (int i = 1; i <= ft.size(); i++) { StdOut.print(ft.rsq(i, i) + " "); } StdOut.println(); } else if (line[0].equals("set")) { ft = new FenwickTree(line.length - 1); for (int i = 1; i <= line.length - 1; i++) { ft.update(i, Integer.parseInt(line[i])); } } else if (line[0].equals("up")) { ft.update(arg1, arg2); for (int i = 1; i <= ft.size(); i++) { StdOut.print(ft.rsq(i, i) + " "); } StdOut.println(); } else if (line[0].equals("rsq")) { StdOut.printf("Sum from %d to %d = %d%n", arg1, arg2, ft.rsq(arg1, arg2)); } else { StdOut.println("Invalid command"); } } } }